版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江西省宜春市高安市高安中學(xué)2025屆高二上數(shù)學(xué)期末預(yù)測試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知離散型隨機(jī)變量X的分布列如下:X123P則數(shù)學(xué)期望()A. B.C.1 D.22.已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的雙曲線的離心率為,則其漸近線方程為()A. B.C. D.3.已知,表示兩條不同的直線,表示平面.下列說法正確的是A.若,,則B.若,,則C.若,,則D.若,,則4.均勻壓縮是物理學(xué)一種常見現(xiàn)象.在平面直角坐標(biāo)系中曲線均勻壓縮,可用曲線上點(diǎn)的坐標(biāo)來描述.設(shè)曲線上任意一點(diǎn),若將曲線縱向均勻壓縮至原來的一半,則點(diǎn)的對應(yīng)點(diǎn)為.同理,若將曲線橫向均勻壓縮至原來的一半,則曲線上點(diǎn)的對應(yīng)點(diǎn)為.若將單位圓先橫向均勻壓縮至原來的一半,再縱向均勻壓縮至原來的,得到的曲線方程為()A. B.C. D.5.若直線的一個(gè)方向向量為,直線的一個(gè)方向向量為,則直線與所成的角為()A30° B.45°C.60° D.90°6.已知,記M到x軸的距離為a,到y(tǒng)軸的距離為b,到z軸的距離為c,則()A. B.C. D.7.如圖,平行六面體中,與的交點(diǎn)為,設(shè),則選項(xiàng)中與向量相等的是()A. B.C. D.8.從裝有2個(gè)紅球和2個(gè)黑球的口袋內(nèi)任取兩個(gè)球,那么互斥而不對立的事件是()A.至少有一個(gè)黑球與都是黑球B.至少有一個(gè)黑球與至少有一個(gè)紅球C.恰好有一個(gè)黑球與恰好有兩個(gè)黑球D.至少有一個(gè)黑球與都是紅球9.給出如下四個(gè)命題正確的是()①方程表示的圖形是圓;②橢圓的離心率;③拋物線的準(zhǔn)線方程是;④雙曲線的漸近線方程是A.③ B.①③C.①④ D.②③④10.若圓與圓有且僅有一條公切線,則()A.-23 B.-3C.-12 D.-1311.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎(COVID—19)疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個(gè)成員檢測呈陽性的概率均為p(0<p<1)且相互獨(dú)立,該家庭至少檢測了5個(gè)人才能確定為“感染高危戶”的概率為f(p),當(dāng)p=p0時(shí),f(p)最大,則p0=()A. B.C. D.12.已知正數(shù)x,y滿足,則取得最小值時(shí)()A. B.C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件則的最小值為__________14.如圖,已知橢圓C1和雙曲線C2交于P1、P2、P3、P4四個(gè)點(diǎn),F(xiàn)1和F2分別是C1的左右焦點(diǎn),也是C2的左右焦點(diǎn),并且六邊形是正六邊形.若橢圓C1的方程為,則雙曲線方程為______.15.某校組織了一場演講比賽,五位評(píng)委對某位參賽選手的評(píng)分分別為9,x,8,y,9.已知這組數(shù)據(jù)的平均數(shù)為8.6,方差為0.24,則______16.已知向量是直線l的一個(gè)方向向量,向量是平面的一個(gè)法向量,若直線平面,則實(shí)數(shù)m的值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為深入學(xué)習(xí)貫徹總書記在黨史學(xué)習(xí)教育動(dòng)員大會(huì)上的重要講話精神和中共中央有關(guān)決策部署,推動(dòng)教育系統(tǒng)圍繞建黨百年重大主題,深化中學(xué)在校師生理想信念教育,引導(dǎo)師生學(xué)史明理、學(xué)史增信、學(xué)史崇德、學(xué)史力行,以昂揚(yáng)的狀態(tài)迎接中國共產(chǎn)黨建黨周年,哈工大附中高二年級(jí)組織本年級(jí)同學(xué)開展了一場黨史知識(shí)競賽.為了解本次知識(shí)競賽的整體情況,隨機(jī)抽取了名學(xué)生的成績作為樣本進(jìn)行統(tǒng)計(jì),得到如圖所示的頻率分布直方圖(1)求直方圖中a的值,并求該次知識(shí)競賽成績的第50百分位數(shù)(精確到0.1);(2)已知該樣本分?jǐn)?shù)在的學(xué)生中,男生占,女生占現(xiàn)從該樣本分?jǐn)?shù)在的學(xué)生中隨機(jī)抽出人,求至少有人是女生的概率.18.(12分)如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點(diǎn),異面直線PA與CD所成的角為90°.(I)在平面PAB內(nèi)找一點(diǎn)M,使得直線CM∥平面PBE,并說明理由;(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.19.(12分)如圖,已知橢圓的焦點(diǎn)是圓與x軸的交點(diǎn),橢圓C的長半軸長等于圓O的直徑(1)求橢圓C的方程;(2)F為橢圓C的右焦點(diǎn),A為橢圓C的右頂點(diǎn),點(diǎn)B在線段FA上,直線BD,BE與橢圓C的一個(gè)交點(diǎn)分別是D,E,直線BD與直線BE的傾斜角互補(bǔ),直線BD與圓O相切,設(shè)直線BD的斜率為.當(dāng)時(shí),求k20.(12分)已知直線過坐標(biāo)原點(diǎn),圓的方程為(1)當(dāng)直線的斜率為時(shí),求與圓相交所得的弦長;(2)設(shè)直線與圓交于兩點(diǎn),,且為的中點(diǎn),求直線的方程21.(12分)已知三棱柱中,,,平面ABC,,E為AB中點(diǎn),D為上一點(diǎn)(1)求證:;(2)當(dāng)D為中點(diǎn)時(shí),求平面ADC與平面所成角的正弦值22.(10分)如圖,在四棱錐中,底面ABCD為直角梯形,,平面ABCD,,.(1)求點(diǎn)B到平面PCD的距離;(2)求二面角的平面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】利用已知條件,結(jié)合期望公式求解即可【詳解】解:由題意可知:故選:D2、A【解析】根據(jù)離心率求出的值,再根據(jù)漸近線方程求解即可.【詳解】因雙曲線焦點(diǎn)在軸上,所以漸近線方程為:,又因?yàn)殡p曲線離心率為,且,所以,解得,即漸近線方程為:.故選:A.3、B【解析】A.運(yùn)用線面平行的性質(zhì),結(jié)合線線的位置關(guān)系,即可判斷;B.運(yùn)用線面垂直的性質(zhì),即可判斷;C.運(yùn)用線面垂直的性質(zhì),結(jié)合線線垂直和線面平行的位置即可判斷;D.運(yùn)用線面平行的性質(zhì)和線面垂直的判定,即可判斷【詳解】A.若m∥α,n∥α,則m,n相交或平行或異面,故A錯(cuò);B.若m⊥α,,由線面垂直的性質(zhì)定理可知,故B正確;C.若m⊥α,m⊥n,則n∥α或n?α,故C錯(cuò);D.若m∥α,m⊥n,則n∥α或n?α或n⊥α,故D錯(cuò)故選B【點(diǎn)睛】本題考查空間直線與平面的位置關(guān)系,考查直線與平面的平行、垂直的判斷與性質(zhì),記熟定理是解題的關(guān)鍵,注意觀察空間的直線與平面的模型4、C【解析】設(shè)單位圓上一點(diǎn)為,經(jīng)過題設(shè)變換后坐標(biāo)為,則,代入圓的方程即可得曲線方程.【詳解】由題設(shè),單位圓上一點(diǎn)坐標(biāo)為,經(jīng)過橫向均勻壓縮至原來的一半,縱向均勻壓縮至原來的,得到對應(yīng)坐標(biāo)為,∴,則,故中,可得:.故選:C.5、C【解析】直接由公式,計(jì)算兩直線的方向向量的夾角,進(jìn)而得出直線與所成角的大小【詳解】因?yàn)?,,所以,所以,所以直線與所成角的大小為故選:C6、C【解析】分別求出點(diǎn)M在x軸,y軸,z軸上的投影點(diǎn)的坐標(biāo),再借助空間兩點(diǎn)間距離公式計(jì)算作答.【詳解】設(shè)點(diǎn)M在x軸上的投影點(diǎn),則,而x軸的方向向量,由得:,解得,則,設(shè)點(diǎn)M在y軸上的投影點(diǎn),則,而y軸的方向向量,由得:,解得,則,設(shè)點(diǎn)M在z軸上的投影點(diǎn),則,而z軸的方向向量,由得:,解得,則,所以.故選:C7、B【解析】利用空間向量加減法、數(shù)乘的幾何意義,結(jié)合幾何體有,進(jìn)而可知與向量相等的表達(dá)式.【詳解】連接,如下圖示:,.故選:B8、C【解析】列舉每個(gè)事件所包含的基本事件,結(jié)合互斥事件和對立事件的定義,逐項(xiàng)判斷.【詳解】A:事件:“至少有一個(gè)黑球”與事件:“都是黑球”可以同時(shí)發(fā)生,如:兩個(gè)都是黑球,這兩個(gè)事件不是互斥事件,故錯(cuò)誤;B:事件:“至少有一個(gè)黑球”與事件:“至少有一個(gè)紅球”可以同時(shí)發(fā)生,如:一個(gè)紅球一個(gè)黑球,故錯(cuò)誤;C:事件:“恰好有一個(gè)黑球”與事件:“恰有兩個(gè)黑球”不能同時(shí)發(fā)生,但從口袋中任取兩個(gè)球時(shí)還有可能是兩個(gè)都是紅球,兩個(gè)事件是互斥事件但不是對立事件,故正確D:事件:“至少有一個(gè)黑球”與“都是紅球”不能同時(shí)發(fā)生,但一定會(huì)有一個(gè)發(fā)生,這兩個(gè)事件是對立事件,故錯(cuò)誤;故選:C9、A【解析】對選項(xiàng)①,根據(jù)圓一般方程求解即可判斷①錯(cuò)誤,對選項(xiàng)②,求出橢圓離心率即可判斷②錯(cuò)誤,對③,求出拋物線漸近線即可判斷③正確,對④,求出雙曲線漸近線方程即可判斷④錯(cuò)誤?!驹斀狻繉τ冖龠x項(xiàng),,,故①錯(cuò)誤;對于②選項(xiàng),由題知,所以,所以離心率,故②錯(cuò)誤;對于③選項(xiàng),拋物線化為標(biāo)準(zhǔn)形式得拋物線,故準(zhǔn)線方程是,故③正確;對于④選項(xiàng),雙曲線化為標(biāo)準(zhǔn)形式得,所以,焦點(diǎn)在軸上,故漸近線方程是,故④錯(cuò)誤.故選:A10、A【解析】根據(jù)兩圓有且僅有一條公切線,得到兩圓內(nèi)切,從而可求出結(jié)果.【詳解】因?yàn)閳A,圓心為,半徑為;圓可化為,圓心為,半徑,又圓與圓有且僅有一條公切線,所以兩圓內(nèi)切,因此,即,解得.故選:A.11、A【解析】解設(shè)事件A為:檢測了5人確定為“感染高危戶”,設(shè)事件B為:檢測了6人確定為“感染高危戶”,則,再利用基本不等式法求解.【詳解】解:設(shè)事件A為:檢測了5人確定為“感染高危戶”,設(shè)事件B為:檢測了6人確定為“感染高危戶”,則,,所以,令,則,,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,即,故選:A12、B【解析】根據(jù)基本不等式進(jìn)行求解即可.【詳解】因?yàn)檎龜?shù)x,y,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),即時(shí),取等號(hào),而,所以解得,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】由題意,根據(jù)約束條件作出可行域圖,如圖所示,將目標(biāo)函數(shù)轉(zhuǎn)化為,作出其平行直線,并將其在可行域內(nèi)平行上下移動(dòng),當(dāng)移到頂點(diǎn)時(shí),在軸上的截距最小,即.14、【解析】先根據(jù)橢圓的方程求得焦點(diǎn)坐標(biāo),然后根據(jù)為正六邊形求得點(diǎn)的坐標(biāo),即點(diǎn)在雙曲線上,然后解出方程即可【詳解】設(shè)雙曲線的方程為:根據(jù)橢圓的方程可得:又為正六邊形,則點(diǎn)的坐標(biāo)為:則點(diǎn)在雙曲線上,可得:又解得:故答案為:15、1【解析】根據(jù)平均數(shù)和方差的計(jì)算公式,求得,則問題得解.【詳解】由題可知:整理得:;,整理得:,聯(lián)立方程組得,解得或,對應(yīng)或,故.故答案為:1.16、-2【解析】由已知可得,即,計(jì)算即可得出結(jié)果.【詳解】因?yàn)槭侵本€的一個(gè)方向向量,是平面的一個(gè)法向量,且直線平面,所以,所以,解得.故答案為:-2.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用頻率和為1求出a;利用百分位數(shù)的定義求出知識(shí)競賽成績的第50百分位數(shù);(2)先利用分層抽樣求出男、女生的人數(shù),利用古典概型求概率.【小問1詳解】,由,解得設(shè)該次知識(shí)競賽成績的第50百分位數(shù)為x,則,解得:.即該次知識(shí)競賽成績的第50百分位數(shù)為【小問2詳解】由頻率分布直方圖可知:分?jǐn)?shù)在)的人數(shù)有人,所以這人中,女生有人,記為、,男生有人,記為、、、從這人中隨機(jī)選取人,基本事件為:、、、、、、、、、、、、、、,共種不同取法;則至少有人是女生的基本事件為、、、、、、、、,共種不同取法,則所求的概率為18、(Ⅰ)見解析;(Ⅱ).【解析】本題考查線面平行、線線平行、向量法等基礎(chǔ)知識(shí),考查空間想象能力、分析問題的能力、計(jì)算能力.第一問,利用線面平行的定理,先證明線線平行,再證明線面平行;第二問,可以先找到線面角,再在三角形中解出正弦值,還可以用向量法建立直角坐標(biāo)系解出正弦值.試題解析:(Ⅰ)在梯形ABCD中,AB與CD不平行.延長AB,DC,相交于點(diǎn)M(M∈平面PAB),點(diǎn)M即為所求的一個(gè)點(diǎn).理由如下:由已知,BC∥ED,且BC=ED.所以四邊形BCDE是平行四邊形.從而CM∥EB.又EB平面PBE,CM平面PBE,所以CM∥平面PBE.(說明:延長AP至點(diǎn)N,使得AP=PN,則所找的點(diǎn)可以是直線MN上任意一點(diǎn))(Ⅱ)方法一:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.從而CD⊥PD.所以PDA是二面角P-CD-A的平面角.所以PDA=45°.設(shè)BC=1,則在Rt△PAD中,PA=AD=2.過點(diǎn)A作AH⊥CE,交CE的延長線于點(diǎn)H,連接PH.易知PA⊥平面ABCD,從而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.過A作AQ⊥PH于Q,則AQ⊥平面PCE.所以APH是PA與平面PCE所成的角.在Rt△AEH中,AEH=45°,AE=1,所以AH=.在Rt△PAH中,PH==,所以sinAPH==.方法二:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.于是CD⊥PD.從而PDA是二面角P-CD-A的平面角.所以PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.設(shè)BC=1,則在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A為原點(diǎn),以,的方向分別為x軸,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,則A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以=(1,0,-2),=(1,1,0),=(0,0,2)設(shè)平面PCE的法向量為n=(x,y,z),由得設(shè)x=2,解得n=(2,-2,1).設(shè)直線PA與平面PCE所成角為α,則sinα==.所以直線PA與平面PCE所成角的正弦值為.考點(diǎn):線線平行、線面平行、向量法.19、(1);(2)-1【解析】(1)由題設(shè)可得,求出參數(shù)b,即可寫出橢圓C的方程;(2)延長線段DB交橢圓C于點(diǎn),根據(jù)對稱性設(shè)B,為,,聯(lián)立橢圓方程,應(yīng)用韋達(dá)定理并結(jié)合已知條件可得,直線與圓相切可得,進(jìn)而求參數(shù)t,即可求直線BD的斜率.【小問1詳解】因?yàn)閳A與x軸的交點(diǎn)分別為,,所以橢圓C的焦點(diǎn)分別為,,∴,根據(jù)條件得,∴,故橢圓C的方程為【小問2詳解】延長線段DB交橢圓C于點(diǎn),因直線BD與直線BE的傾斜角互補(bǔ),根據(jù)對稱性得由條件可設(shè)B的坐標(biāo)為,設(shè)D,的縱坐標(biāo)分別為,,直線的方程為,由于,即,所以由得:∴,∴①,②,由①得:,代入②得,∴∵直線與圓相切,∴,即∴,解得,又,∴,故,即直線BD斜率【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:將已知線段的長度關(guān)系轉(zhuǎn)化為D,的縱坐標(biāo)的數(shù)量關(guān)系,設(shè)直線的含參方程,聯(lián)立橢圓方程及其與圓的相切求參數(shù)關(guān)系,進(jìn)而求參數(shù)即可.20、(1)(2)或【解析】(1)、由題意可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年鋼筋結(jié)構(gòu)施工協(xié)議
- 2025年智能交通系統(tǒng)建設(shè)反擔(dān)保合同3篇
- 2024年量子計(jì)算機(jī)技術(shù)研發(fā)與許可合同
- 2024年研發(fā)團(tuán)隊(duì)外包服務(wù)合同
- 專業(yè)化一體化服務(wù)合同范本(2024年版)版
- 2024校服生產(chǎn)與校園服裝租賃服務(wù)合同3篇
- 2024版混凝土框架結(jié)構(gòu)施工協(xié)議條款版B版
- 專業(yè)化人力資源解決方案服務(wù)協(xié)議樣本版A版
- 2025不動(dòng)產(chǎn)抵押權(quán)設(shè)立與登記服務(wù)擔(dān)保合同范本3篇
- 2024年茶園土地承包管理合同樣本
- 2025年江蘇建筑安全員A證考試題庫及答案
- 2024年WPS計(jì)算機(jī)二級(jí)考試題庫350題(含答案)
- 2024年首都機(jī)場集團(tuán)招聘筆試參考題庫附帶答案詳解
- 新教科版八年級(jí)物理下冊全冊ppt課件
- 草莓采摘機(jī)械手的設(shè)計(jì)與實(shí)現(xiàn)
- 最全的官能團(tuán)化合物的紅外吸收峰特征
- 高中音樂公開課教案{非洲音樂}
- AP1000核電站常規(guī)島簡介
- 井下軌道鋪設(shè)標(biāo)準(zhǔn)
- 新版PEP人教版小學(xué)英語六年級(jí)上、下冊單詞表(共6頁)
- 鋼便橋施工專項(xiàng)方案(一)(型鋼縱梁)
評(píng)論
0/150
提交評(píng)論