版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河南省安陽(yáng)市林州市林濾中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)數(shù)列的前項(xiàng)和為,且,則()A. B.C. D.2.在等比數(shù)列中,,且,則t=()A.-2 B.-1C.1 D.23.若拋物線與直線:相交于兩點(diǎn),則弦的長(zhǎng)為()A.6 B.8C. D.4.下列結(jié)論中正確的個(gè)數(shù)為()①,;②;③A.0 B.1C.2 D.35.拋物線y=4x2的焦點(diǎn)坐標(biāo)是()A.(0,1) B.(1,0)C. D.6.從裝有2個(gè)紅球和2個(gè)白球的口袋內(nèi)任取兩個(gè)球,則下列選項(xiàng)中的兩個(gè)事件為互斥事件的是()A.至多有1個(gè)白球;都是紅球 B.至少有1個(gè)白球;至少有1個(gè)紅球C.恰好有1個(gè)白球;都是紅球 D.至多有1個(gè)白球;至多有1個(gè)紅球7.如圖,在直三棱柱中,D為棱的中點(diǎn),,,,則異面直線CD與所成角的余弦值為()A. B.C. D.8.已知集合A={1,a,b},B={a2,a,ab},若A=B,則a2021+b2020=()A.-1 B.0C.1 D.29.在棱長(zhǎng)為1的正方體中,是線段上一個(gè)動(dòng)點(diǎn),則下列結(jié)論正確的有()A.不存在點(diǎn)使得異面直線與所成角為90°B.存在點(diǎn)使得異面直線與所成角為45°C.存在點(diǎn)使得二面角的平面角為45°D.當(dāng)時(shí),平面截正方體所得的截面面積為10.關(guān)于x的方程在內(nèi)有解,則實(shí)數(shù)m的取值范圍()A. B.C. D.11.已知點(diǎn)的坐標(biāo)為(5,2),F(xiàn)為拋物線的焦點(diǎn),若點(diǎn)在拋物線上移動(dòng),當(dāng)取得最小值時(shí),則點(diǎn)的坐標(biāo)是A.(1,) B.C. D.12.有這樣一道題目:“戴氏善屠,日益功倍.初日屠五兩,今三十日屠訖,向共屠幾何?”其意思為:“有一個(gè)姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5兩肉,共屠了30天,問(wèn)一共屠了多少兩肉?"在這個(gè)問(wèn)題中,該屠夫前5天所屠肉的總兩數(shù)為()A.35 B.75C.155 D.315二、填空題:本題共4小題,每小題5分,共20分。13.不等式的解集是_______________14.在平面直角坐標(biāo)系中,直線與的交點(diǎn)為,以為圓心作圓,圓上的點(diǎn)到軸的最小距離為(Ⅰ)求圓的標(biāo)準(zhǔn)方程;(Ⅱ)過(guò)點(diǎn)作圓的切線,求切線的方程15.已知數(shù)列滿足,若對(duì)任意恒成立,則實(shí)數(shù)的取值范圍為_(kāi)_______16.已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)求的單調(diào)區(qū)間;三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知拋物線上的點(diǎn)M(5,m)到焦點(diǎn)F的距離為6.(1)求拋物線C的方程;(2)過(guò)點(diǎn)作直線l交拋物線C于A,B兩點(diǎn),且點(diǎn)P是線段AB的中點(diǎn),求直線l方程.18.(12分)在平面直角坐標(biāo)系中,橢圓的離心率為,且點(diǎn)在橢圓C上(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)的直線與橢圓C交于A,B兩點(diǎn),試探究直線上是否存在定點(diǎn)Q,使得為定值.若存在,求出定點(diǎn)Q的坐標(biāo)及實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由19.(12分)已知橢圓的離心率為,右焦點(diǎn)為,斜率為1的直線與橢圓交于兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為.(1)求橢圓的方程;(2)求的面積.20.(12分)在平面直角坐標(biāo)系中,△的三個(gè)頂點(diǎn)分別是點(diǎn).(1)求△的外接圓O的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)作直線平行于直線,判斷直線與圓O的位置關(guān)系,并說(shuō)明理由.21.(12分)已知橢圓左,右頂點(diǎn)分別是,,且,是橢圓上異于,的不同的兩點(diǎn)(1)若,證明:直線必過(guò)坐標(biāo)原點(diǎn);(2)設(shè)點(diǎn)是以為直徑的圓和以為直徑的圓的另一個(gè)交點(diǎn),記線段的中點(diǎn)為,若,求動(dòng)點(diǎn)的軌跡方程22.(10分)已知直線l:2mx-y-8m-3=0和圓C:x2+y2-6x+12y+20=0.(1)m∈R時(shí),證明l與C總相交;(2)m取何值時(shí),l被C截得的弦長(zhǎng)最短?求此弦長(zhǎng)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用,把代入中,即可求出答案.【詳解】當(dāng)時(shí),.當(dāng)時(shí),.故選:C.2、A【解析】先求出,利用等比中項(xiàng)求出t.【詳解】在等比數(shù)列中,,且,所以所以,即,解得:.當(dāng)時(shí),,不符合等比數(shù)列的定義,應(yīng)舍去,故.故選:A.3、B【解析】由題得拋物線的焦點(diǎn)坐標(biāo)為剛好在直線上,再聯(lián)立直線和拋物線的方程,利用韋達(dá)定理和拋物線的定義求解.【詳解】解:由題得.由題得拋物線的焦點(diǎn)坐標(biāo)為剛好在直線上,設(shè),聯(lián)立直線和拋物線方程得,所以.所以.故選:B4、C【解析】構(gòu)造函數(shù)利用導(dǎo)數(shù)說(shuō)明函數(shù)的單調(diào)性,即可判斷大小,從而得解;【詳解】解:令,,則,所以在上單調(diào)遞增,所以,即,即,,故①正確;令,,則,所以當(dāng)時(shí),,當(dāng)時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,即恒成立,所以,故②正確;令,,當(dāng)時(shí),當(dāng)時(shí),所以在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),故③錯(cuò)誤;故選:C5、C【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,由此可拋物線的焦點(diǎn)坐標(biāo)得選項(xiàng).【詳解】解:將拋物線y=4x2的化為標(biāo)準(zhǔn)方程為x2=y(tǒng),p=,開(kāi)口向上,焦點(diǎn)在y軸的正半軸上,故焦點(diǎn)坐標(biāo)為(0,).故選:C6、C【解析】根據(jù)試驗(yàn)過(guò)程進(jìn)行分析,利用互斥事件的定義對(duì)四個(gè)選項(xiàng)一一判斷即可.【詳解】對(duì)于A:“至多有1個(gè)白球”包含都是紅球和一紅一白,“都是紅球”包含都是紅球,所以“至多有1個(gè)白球”與“都是紅球”不是互斥事件.故A錯(cuò)誤;對(duì)于B:“至少有1個(gè)白球”包含都是白球和一紅一白,“至少有1個(gè)紅球”包含都是紅球和一紅一白,所以“至少有1個(gè)白球”與“至少有1個(gè)紅球”不是互斥事件.故B錯(cuò)誤;對(duì)于C:“恰好有1個(gè)白球”包含一紅一白,“都是紅球”包含都是紅球,所以“恰好有1個(gè)白球”與“都是紅球”是互斥事件.故C錯(cuò)誤;對(duì)于D:“至多有1個(gè)紅球”包含都是白球和一紅一白,“至多有1個(gè)白球”包含都是紅球和一紅一白,所以“至多有1個(gè)白球”與“至多有1個(gè)紅球”不是互斥事件.故D錯(cuò)誤.故選:C7、A【解析】以C為坐標(biāo)原點(diǎn),分別以,,方向?yàn)閤,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系.運(yùn)用異面直線的空間向量求解方法,可求得答案.【詳解】解:以C為坐標(biāo)原點(diǎn),分別以,,的方向?yàn)閤,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系.由已知可得,,,,則,,所以.又因?yàn)楫惷嬷本€所成的角的范圍為,所以異面直線與所成角的余弦值為.故選:A.8、A【解析】根據(jù)A=B,可得兩集合元素全部相等,分別求得和ab=1兩種情況下,a,b的取值,分析討論,即可得答案.【詳解】因?yàn)锳=B,若,解得,當(dāng)時(shí),不滿足互異性,舍去,當(dāng)時(shí),A={1,-1,b},B={1,-1,-b},因?yàn)锳=B,所以,解得,所以;若ab=1,則,所以,若,解得或1,都不滿足題意,舍去,若,解得,不滿足互異性,舍去,故選:A【點(diǎn)睛】本題考查兩集合相等的概念,在集合相等問(wèn)題中由一個(gè)條件求出參數(shù)后需進(jìn)行代入檢驗(yàn),檢驗(yàn)是否滿足互異性、題設(shè)條件等,屬基礎(chǔ)題.9、D【解析】由正方體的性質(zhì)可將異面直線與所成的角可轉(zhuǎn)化為直線與所成角,而當(dāng)為的中點(diǎn)時(shí),可得,可判斷A;與或重合時(shí),直線與所成的角最小可判斷B;當(dāng)與重合時(shí),二面角的平面角最小,通過(guò)計(jì)算可判斷C;過(guò)作,交于,交于點(diǎn),由題意可得四邊形即為平面截正方體所得的截面,且四邊形是等腰梯形,然后利用已知數(shù)據(jù)計(jì)算即可判斷D.【詳解】異面直線與所成的角可轉(zhuǎn)化為直線與所成角,當(dāng)為中點(diǎn)時(shí),,此時(shí)與所成的角為90°,所以A錯(cuò)誤;當(dāng)與或重合時(shí),直線與所成角最小,為60°,所以B錯(cuò)誤;當(dāng)與重合時(shí),二面角的平面角最小,,所以,所以C錯(cuò)誤;對(duì)于D,過(guò)作,交于,交于點(diǎn),因?yàn)椋?、分別是、的中點(diǎn),又,所以,四邊形即為平面截正方體所得的截面,因?yàn)椋?,所以四邊形是等腰梯形,作交于點(diǎn),所以,,所以梯形的面積為,所以D正確.故選:D.10、A【解析】當(dāng)時(shí),顯然不成立,當(dāng)時(shí),分離變量,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.【詳解】當(dāng)時(shí),可得顯然不成立;當(dāng)時(shí),由于方程可轉(zhuǎn)化為,令,可得,當(dāng)時(shí),,函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減,所以當(dāng)時(shí),函數(shù)取唯一的極大值,也是最大值,所以,所以,即,所以實(shí)數(shù)m的取值范圍.故選:A.11、D【解析】過(guò)作準(zhǔn)線的垂線,垂足為,則,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)等號(hào)成立,此時(shí),故,所以,選D12、C【解析】構(gòu)造等比數(shù)列模型,利用等比數(shù)列的前項(xiàng)和公式計(jì)算可得結(jié)果.【詳解】由題意可得該屠夫每天屠的肉成等比數(shù)列,記首項(xiàng)為,公比為,前項(xiàng)和為,所以,,因此前5天所屠肉的總兩數(shù)為.故選:C.【點(diǎn)睛】本題考查了等比數(shù)列模型,考查了等比數(shù)列的前項(xiàng)和公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】將分式不等式,轉(zhuǎn)化為一元二次不等式求解【詳解】因?yàn)椋?,解得?故答案為:或【點(diǎn)睛】本題主要考查分式不等式的解法,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.14、(Ⅰ);(Ⅱ)或【解析】(Ⅰ)求出點(diǎn)的坐標(biāo),設(shè)圓的半徑為,圓上的點(diǎn)到軸的最小距離為1求得的值,由此可得出圓的標(biāo)準(zhǔn)方程;(Ⅱ)對(duì)切線的斜率是否存在進(jìn)行分類討論,當(dāng)切線的斜率不存在時(shí),可得切線方程為,驗(yàn)證即可;當(dāng)切線的斜率存在時(shí),可設(shè)所求切線的方程為,利用圓心到切線的距離等于圓的半徑可求得的值,綜合可得出所求切線的方程.【詳解】(Ⅰ)聯(lián)立方程組,解得,即點(diǎn)設(shè)圓的半徑為,由于圓上的點(diǎn)到軸的最小距離為,則,所以,故圓的標(biāo)準(zhǔn)方程為;(Ⅱ)若切線的斜率不存在,則所求切線的方程為,圓心到直線的距離為,不合乎題意;若切線的斜率存在,可設(shè)切線的方程為,即,圓的圓心坐標(biāo)為,半徑為,由題意可得,整理得,解得或故所求切線方程為或【點(diǎn)睛】本題考查圓的標(biāo)準(zhǔn)方程的求解,同時(shí)也考查了過(guò)圓外一點(diǎn)的圓的切線方程的求解,考查計(jì)算能力,屬于中等題.15、【解析】根據(jù)給定條件求出,構(gòu)造新數(shù)列并借助單調(diào)性求解作答.【詳解】在數(shù)列中,,當(dāng),時(shí),,則有,而滿足上式,因此,,,顯然數(shù)列是遞增數(shù)列,且,,又對(duì)任意恒成立,則,所以實(shí)數(shù)的取值范圍為.故答案為:【點(diǎn)睛】思路點(diǎn)睛:給定數(shù)列的前項(xiàng)和或者前項(xiàng)積,求通項(xiàng)時(shí),先要按和分段求,然后看時(shí)是否滿足時(shí)的表達(dá)式,若不滿足,就必須分段表達(dá).16、(1)(2)詳見(jiàn)解析【解析】(1)分別求得和,從而得到切線方程;(2)求導(dǎo)后,令求得兩根,分別在、和三種情況下根據(jù)導(dǎo)函數(shù)的正負(fù)得到函數(shù)的單調(diào)區(qū)間.【詳解】(1),,,,又,在處的切線方程為.(2),令,解得:,.①當(dāng)時(shí),若和時(shí),;若時(shí),;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;②當(dāng)時(shí),在上恒成立,的單調(diào)遞增區(qū)間為,無(wú)單調(diào)遞減區(qū)間;③當(dāng)時(shí),若和時(shí),;若時(shí),;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;綜上所述:當(dāng)時(shí),的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;當(dāng)時(shí),的單調(diào)遞增區(qū)間為,無(wú)單調(diào)遞減區(qū)間;當(dāng)時(shí),的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)的幾何意義求解曲線在某一點(diǎn)處的切線方程、利用導(dǎo)數(shù)討論含參數(shù)函數(shù)的單調(diào)區(qū)間的問(wèn)題,屬于??碱}型.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)由拋物線定義有求參數(shù),即可寫(xiě)出拋物線方程.(2)由題意設(shè),聯(lián)立拋物線方程,結(jié)合韋達(dá)定理、中點(diǎn)坐標(biāo)求參數(shù)k,即可得直線l方程【小問(wèn)1詳解】由題設(shè),拋物線準(zhǔn)線方程為,∴拋物線定義知:可得,故【小問(wèn)2詳解】由題設(shè),直線l的斜率存在且不為0,設(shè)聯(lián)立方程,得,整理得,則.又P是線段AB的中點(diǎn),∴,即故l18、(1)(2)存在,定點(diǎn)的坐標(biāo)為,實(shí)數(shù)的值為【解析】(1)由題意可得,再結(jié)合,可求出,從而可求得橢圓方程,(2)設(shè)在直線上存在定點(diǎn),當(dāng)直線斜率存在時(shí),設(shè)過(guò)點(diǎn)P的動(dòng)直線l為,設(shè),,將直線方程代入橢圓方程消去,利用根與系數(shù),再計(jì)算為常數(shù)可求出,從而可求得,當(dāng)直線斜率不存在時(shí),可求出兩點(diǎn)的坐標(biāo),從而可求得的值【小問(wèn)1詳解】由題意知結(jié)合,可得,所以橢圓C的標(biāo)準(zhǔn)方程為,【小問(wèn)2詳解】設(shè)在直線上存在定點(diǎn),使為定值,①當(dāng)直線斜率存在時(shí),設(shè)過(guò)點(diǎn)P的動(dòng)直線l為,設(shè),·由得,則,,所以為常數(shù)則,解之得,即定點(diǎn)為,則②當(dāng)直線斜率不存在時(shí),即動(dòng)直線方程為,不妨設(shè),,此時(shí)也成立所以,存在定點(diǎn)使為定值,即19、(1)(2)【解析】(1)根據(jù)橢圓的簡(jiǎn)單幾何性質(zhì)知,又,寫(xiě)出橢圓的方程;(2)先斜截式設(shè)出直線,聯(lián)立方程組,根據(jù)直線與圓錐曲線的位置關(guān)系,可得出中點(diǎn)為的坐標(biāo),再根據(jù)△為等腰三角形知,從而得的斜率為,求出,寫(xiě)出:,并計(jì)算,再根據(jù)點(diǎn)到直線距離公式求高,即可計(jì)算出面積【詳解】(1)由已知得,,解得,又,所以橢圓的方程為(2)設(shè)直線的方程為,由得,①設(shè)、的坐標(biāo)分別為,(),中點(diǎn)為,則,,因?yàn)槭堑妊鞯牡走?,所以所以的斜率為,解得,此時(shí)方程①為解得,,所以,,所以,此時(shí),點(diǎn)到直線:距離,所以△的面積考點(diǎn):1、橢圓的簡(jiǎn)單幾何性質(zhì);2、直線和橢圓的位置關(guān)系;3、橢圓的標(biāo)準(zhǔn)方程;4、點(diǎn)到直線的距離.【思路點(diǎn)晴】本題主要考查的是橢圓的方程,橢圓的簡(jiǎn)單幾何性質(zhì),直線與橢圓的位置關(guān)系,點(diǎn)到直線的距離,屬于難題.解決本類問(wèn)題時(shí),注意使用橢圓的幾何性質(zhì),求得橢圓的標(biāo)準(zhǔn)方程;求三角形的面積需要求出底和高,在求解過(guò)程中要充分利用三角形是等腰三角形,進(jìn)而知道定點(diǎn)與弦中點(diǎn)的連線垂直,這是解決問(wèn)題的關(guān)鍵20、(1);(2)直線與圓O相切,理由見(jiàn)解析.【解析】(1)法1:設(shè)外接圓為,由點(diǎn)在圓上,將其代入方程求參數(shù),即可得圓的方程;法2:利用斜率的兩點(diǎn)式易得,則是△外接圓的直徑,進(jìn)而求圓心坐標(biāo)、半徑,即可得圓的標(biāo)準(zhǔn)方程.(2)由題設(shè)有直線垂直于x軸,根據(jù)直線平行于直線及所過(guò)的點(diǎn)寫(xiě)出直線l的方程,求圓O的圓心與直線距離,并與半徑比大小,即可確定它們的位置關(guān)系.【小問(wèn)1詳解】法1:設(shè)過(guò)三點(diǎn)的圓的方程為,則,解得,所求圓的方程為,即.法2:因,所以,則是△外接圓的直徑,圓心,所以所求圓的方程為.【小問(wèn)2詳解】因?yàn)?,則直線垂直于x軸,所以直線的方程為,由(1)知:圓心到直線的距離,所以直線與圓O相切.21、(1)證明見(jiàn)解析;(2).【解析】(1)設(shè),首先證明,從而可得到,即得到;進(jìn)而可得到四邊形為平行四邊形;再根據(jù)為的中點(diǎn),即可證明直線必過(guò)坐標(biāo)原點(diǎn)(2)設(shè)出直線的方程,與橢圓
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 八下期末考拔高測(cè)試卷(3)(解析版)
- 《色彩的聯(lián)想》課件
- 《廉政專題教育講座》課件
- 教育培訓(xùn)行業(yè)前臺(tái)接待總結(jié)
- 樂(lè)器店前臺(tái)崗位職責(zé)總結(jié)
- 2023年-2024年員工三級(jí)安全培訓(xùn)考試題附答案【預(yù)熱題】
- 2023年-2024年安全管理人員安全教育培訓(xùn)試題及答案典型題
- 2023年-2024年項(xiàng)目部治理人員安全培訓(xùn)考試題及答案高清
- 1994年安徽高考語(yǔ)文真題及答案
- 1993年福建高考語(yǔ)文真題及答案
- GB/T 10739-2023紙、紙板和紙漿試樣處理和試驗(yàn)的標(biāo)準(zhǔn)大氣條件
- 《家居顏色搭配技巧》課件
- 鐵三角管理辦法(試行)
- 高考小說(shuō)閱讀分類導(dǎo)練:詩(shī)化小說(shuō)(知識(shí)導(dǎo)讀+強(qiáng)化訓(xùn)練+答案解析)
- 《公司法培訓(xùn)》課件
- 全國(guó)教育科學(xué)規(guī)劃課題申報(bào)書(shū):83.《供需適配性理論視域下我國(guó)老年教育資源供需匹配度研究》
- 民用航空器-世界主要機(jī)型介紹
- 經(jīng)驗(yàn)教訓(xùn)記錄
- 【語(yǔ)文】江蘇省蘇州市星海小學(xué)小學(xué)三年級(jí)上冊(cè)期末試題(含答案)
- 設(shè)計(jì)圖紙成品校審記錄單
- 電動(dòng)牽引車設(shè)備安全操作規(guī)定
評(píng)論
0/150
提交評(píng)論