版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省普通高中2025屆高一數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.定義在R上的偶函數(shù)f(x)滿足,當(dāng)x∈[0,1]時,則函數(shù)在區(qū)間上的所有零點的和為()A.10 B.9C.8 D.62.已知函數(shù),,的零點分別,,,則,,的大小關(guān)系為()A. B.C. D.3.已知,,,則下列判斷正確的是()A. B.C. D.4.,,且(3)(λ),則λ等于()A. B.-C.± D.15.若關(guān)于的方程在上有實數(shù)根,則實數(shù)的取值范圍是()A. B.C. D.6.已知,且,則下列不等式恒成立的是()A. B.C. D.7.已知圓與直線交于,兩點,過,分別作軸的垂線,且與軸分別交于,兩點,若,則A.或1 B.7或C.或 D.7或18.在中,,.若邊上一點滿足,則()A. B.C. D.9.函數(shù)的零點所在區(qū)間為A. B.C. D.10.我國古代數(shù)學(xué)名著《九章算術(shù)》里有一道關(guān)于玉石的問題:“今有玉方一寸,重七兩;石方一寸,重六兩.今有石方三寸,中有玉,并重十一斤(兩).問玉、石重各幾何?”如圖所示的程序框圖反映了對此題的一個求解算法,運行該程序框圖,則輸出的,分別為()A., B.,C., D.,二、填空題:本大題共6小題,每小題5分,共30分。11.用二分法研究函數(shù)f(x)=x3+3x-1的零點時,第一次經(jīng)計算,可得其中一個零點x0∈(0,1),那么經(jīng)過下一次計算可得x0∈___________(填區(qū)間).12.如圖,扇形的面積是1,它的弧長是2,則扇形的圓心角的弧度數(shù)為______13.已知函數(shù),若是上的單調(diào)遞增函數(shù),則的取值范圍是__________14.寫出一個同時具有下列性質(zhì)①②的函數(shù)______.(注:不是常數(shù)函數(shù))①;②.15.若函數(shù)在區(qū)間上是增函數(shù),則實數(shù)取值范圍是______16.,若,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.定義:若對定義域內(nèi)任意x,都有(a為正常數(shù)),則稱函數(shù)為“a距”增函數(shù)(1)若,(0,),試判斷是否為“1距”增函數(shù),并說明理由;(2)若,R是“a距”增函數(shù),求a的取值范圍;(3)若,(﹣1,),其中kR,且為“2距”增函數(shù),求的最小值18.函數(shù)(1)當(dāng)時,求函數(shù)的值域;(2)當(dāng)時,求函數(shù)的最小值19.某形場地,,米(、足夠長).現(xiàn)修一條水泥路在上,在上),在四邊形中種植三種花卉,為了美觀起見,決定在上取一點,使且.現(xiàn)將鋪成鵝卵石路,設(shè)鵝卵石路總長為米.(1)設(shè),將l表示成的函數(shù)關(guān)系式;(2)求l的最小值.20.△ABC的兩頂點A(3,7),B(,5),若AC的中點在軸上,BC的中點在軸上(1)求點C的坐標(biāo);(2)求AC邊上中線BD的長及直線BD的斜率21.函數(shù)中角的終邊經(jīng)過點,若時,的最小值為.(1)求函數(shù)的解析式;(2)求函數(shù)的單調(diào)遞增區(qū)間.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)條件可得函數(shù)f(x)的圖象關(guān)于直線x=1對稱;根據(jù)函數(shù)的解析式及奇偶性,對稱性可得出函數(shù)f(x)在的圖象;令,畫出其圖象,進(jìn)而得出函數(shù)的圖象.根據(jù)函數(shù)圖象及其對稱性,中點坐標(biāo)公式即可得出結(jié)論【詳解】因為定義在R上的偶函數(shù)f(x)滿足,所以函數(shù)f(x)的圖象關(guān)于直線x=1對稱,當(dāng)x∈[0,1]時,,可以得出函數(shù)f(x)在上的圖象,進(jìn)而得出函數(shù)f(x)在的圖象.畫出函數(shù),的圖象;令,可得周期T1,畫出其圖象,進(jìn)而得出函數(shù)的圖象由圖象可得:函數(shù)在區(qū)間上共有10個零點,即5對零點,每對零點的中點都為1,所以所有零點的和為.故選:A2、A【解析】判斷出三個函數(shù)的單調(diào)性,可求出,,并判斷,進(jìn)而可得到答案【詳解】因為在上遞增,當(dāng)時,,所以;因為在上遞增,當(dāng)時,恒成立,故的零點小于0,即;因為在上遞增,當(dāng)時,,故,故.故選:A.3、C【解析】對數(shù)函數(shù)的單調(diào)性可比較、與的大小關(guān)系,由此可得出結(jié)論.【詳解】,即.故選:C.4、A【解析】利用向量垂直的充要條件列出方程,利用向量的運算律展開并代值,即可求出λ【詳解】∵,∴=0,∵(3)⊥(λ),∴(3)?(λ)=0,即3λ2+(2λ﹣3)﹣22=0,∴12λ﹣18=0,解得λ=故選A5、A【解析】當(dāng)時,令,可得出,可得出,利用函數(shù)的單調(diào)性求出函數(shù)在區(qū)間上的值域,可得出關(guān)于實數(shù)的不等式,由此可解得實數(shù)的取值范圍.【詳解】當(dāng)時,令,則,可得,設(shè),其中,任取、,則.當(dāng)時,,則,即,所以,函數(shù)在上為減函數(shù);當(dāng)時,,則,即,所以,函數(shù)在上為增函數(shù).所以,,,,則,故函數(shù)在上的值域為,所以,,解得.故選:A.6、D【解析】對A,C利用特殊值即可判斷;對B,由對數(shù)函數(shù)的定義域即可判斷,對D,由指數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】解:對A,令,,則滿足,但,故A錯誤;對B,若使,則需滿足,但題中,故B錯誤;對C,同樣令,,則滿足,但,故C錯誤;對D,在上單調(diào)遞增,當(dāng)時,,故D正確.故選:D.7、A【解析】由題可得出,利用圓心到直線的距離可得,進(jìn)而求得答案【詳解】因為直線的傾斜角為,,所以,利用圓心到直線的距離可得,解得或.【點睛】本題考查直線與圓的位置關(guān)系,屬于一般題8、A【解析】根據(jù)向量的線性運算法則,結(jié)合題意,即可求解.【詳解】由中,,且邊上一點滿足,如圖所示,根據(jù)向量的線性運算法則,可得:.故選:A.9、C【解析】要判斷函數(shù)的零點位置,我們可以根據(jù)零點存在定理,依次判斷區(qū)間的兩個端點對應(yīng)的函數(shù)值,然后根據(jù)連續(xù)函數(shù)在區(qū)間上零點,則與異號進(jìn)行判斷【詳解】,,故函數(shù)的零點必落在區(qū)間故選C【點睛】本題考查的知識點是函數(shù)的零點,解答的關(guān)鍵是零點存在定理:即連續(xù)函數(shù)在區(qū)間上與異號,則函數(shù)在區(qū)間上有零點10、C【解析】執(zhí)行程序框圖,;;;,結(jié)束循環(huán),輸出的分別為,故選C.【方法點睛】本題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問題時一定要正確控制循環(huán)次數(shù);(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運算方法逐次計算,直到達(dá)到輸出條件即可.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)零點存在性定理判斷零點所在區(qū)間.【詳解】,,所以下一次計算可得.故答案為:12、【解析】根據(jù)扇形的弧長公式和面積公式,列出方程組,即可求解.【詳解】由題意,設(shè)扇形所在圓的半徑為,扇形的弧長為,因為扇形的面積是1,它的弧長是2,由扇形的面積公式和弧長公式,可得,解得,.故答案為2.【點睛】本題主要考查了扇形的弧長公式,以及扇形的面積公式的應(yīng)用,其中解答中熟記扇形的弧長公式和扇形的面積公式,準(zhǔn)確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.13、【解析】利用函數(shù)的單調(diào)性求出a的取值范圍,再求出的表達(dá)式并其范圍作答.【詳解】因函數(shù)是上的單調(diào)遞增函數(shù),因此有,解得,所以.故答案為:14、【解析】根據(jù)函數(shù)值以及函數(shù)的周期性進(jìn)行列舉即可【詳解】由知函數(shù)的周期是,則滿足條件,,滿足條件,故答案為:(答案不唯一)15、【解析】令,由題設(shè)易知在上為增函數(shù),根據(jù)二次函數(shù)的性質(zhì)列不等式組求的取值范圍.【詳解】由題設(shè),令,而為增函數(shù),∴要使在上是增函數(shù),即在上為增函數(shù),∴或,可得或,∴的取值范圍是.故答案為:16、【解析】分和兩種情況解方程,由此可得出的值.【詳解】當(dāng)時,由,解得;當(dāng)時,由,解得(舍去).綜上所述,.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2);(3).【解析】(1)利用“1距”增函數(shù)的定義證明即可;(2)由“a距”增函數(shù)的定義得到在上恒成立,求出a的取值范圍即可;(3)由為“2距”增函數(shù)可得到在恒成立,從而得到恒成立,分類討論可得到的取值范圍,再由,可討論出的最小值【詳解】(1)任意,,因為,,所以,所以,即是“1距”增函數(shù)(2).因為是“距”增函數(shù),所以恒成立,因為,所以在上恒成立,所以,解得,因為,所以.(3)因為,,且為“2距”增函數(shù),所以時,恒成立,即時,恒成立,所以,當(dāng)時,,即恒成立,所以,得;當(dāng)時,,得恒成立,所以,得,綜上所述,得.又,因為,所以,當(dāng)時,若,取最小值為;當(dāng)時,若,取最小值.因為在R上是單調(diào)遞增函數(shù),所以當(dāng),的最小值為;當(dāng)時的最小值為,即.【點睛】本題考查了函數(shù)的綜合知識,考查了函數(shù)的單調(diào)性與最值,考查了恒成立問題,考查了分類討論思想的運用,屬于中檔題18、(1)(2)答案見解析【解析】(1)化簡函數(shù),結(jié)合二次函數(shù)的圖象與性質(zhì),即可求解;(2)根據(jù)函數(shù)的解析式,分,和,三種情況討論,結(jié)合二次函數(shù)的性質(zhì),即可求解.【小問1詳解】解:由題意,函數(shù),可得函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)在區(qū)間上的最大值為,最小值為,綜上函數(shù)在上的值域為.【小問2詳解】解:①當(dāng)時,函數(shù)在區(qū)間上單調(diào)遞減,最小值為;②當(dāng)時,函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,最小值為;③當(dāng)時,函數(shù)在區(qū)間上單調(diào)遞增,最小值為,綜上可得:當(dāng)時,函數(shù)的最小值為;當(dāng),函數(shù)的最小值為;當(dāng)時,函數(shù)的最小值為.19、(1)見解析;(2)20.【解析】(1)設(shè),可得:,;(2)利用二次函數(shù)求最值即可.試題解析:(1)設(shè)米,則即,(2),當(dāng),即時,取得最小值為,的最小值為20.答:的最小值為20.20、(1)(2),【解析】(1)由條
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建立知識共享平臺的計劃
- 財務(wù)預(yù)測模型解析計劃
- 領(lǐng)導(dǎo)者在危機中的決策與反應(yīng)計劃
- 生物課程知識分享計劃
- 噴灑車輛相關(guān)項目投資計劃書范本
- 《軟件測試培訓(xùn)講義》課件
- 投訴處理與顧客滿意度培訓(xùn)
- 校外輔導(dǎo)機構(gòu)保安措施計劃
- 情感交流班主任與學(xué)生的紐帶計劃
- 吹塑機械行業(yè)相關(guān)投資計劃提議
- 2024年電焊工安全技能操作及理論知識考試題庫(附含答案)
- 鋼結(jié)構(gòu)現(xiàn)場檢測技術(shù)標(biāo)準(zhǔn)
- 三只松鼠財務(wù)分析
- 瑞幸年終述職報告2023
- 金屬擠壓共(有色擠壓工)中級復(fù)習(xí)資料復(fù)習(xí)測試有答案
- 產(chǎn)業(yè)聯(lián)動視角下的樂器產(chǎn)業(yè)區(qū)升級研究-以揚州琴箏產(chǎn)業(yè)區(qū)為例的中期報告
- 花籃拉桿式懸挑腳手架工程技術(shù)交底
- 公共收益管理規(guī)約
- 中學(xué)教師問卷調(diào)查總結(jié)報告
- 中國中鐵PPT模板
- 國家開放大學(xué)一網(wǎng)一平臺電大《建筑測量》實驗報告1-5題庫
評論
0/150
提交評論