安徽省宿州市2025屆數學高三第一學期期末復習檢測模擬試題含解析_第1頁
安徽省宿州市2025屆數學高三第一學期期末復習檢測模擬試題含解析_第2頁
安徽省宿州市2025屆數學高三第一學期期末復習檢測模擬試題含解析_第3頁
安徽省宿州市2025屆數學高三第一學期期末復習檢測模擬試題含解析_第4頁
安徽省宿州市2025屆數學高三第一學期期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省宿州市2025屆數學高三第一學期期末復習檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中國古典樂器一般按“八音”分類.這是我國最早按樂器的制造材料來對樂器進行分類的方法,最先見于《周禮·春官·大師》,分為“金、石、土、革、絲、木、匏(páo)、竹”八音,其中“金、石、木、革”為打擊樂器,“土、匏、竹”為吹奏樂器,“絲”為彈撥樂器.現從“八音”中任取不同的“兩音”,則含有打擊樂器的概率為()A. B. C. D.2.如圖是二次函數的部分圖象,則函數的零點所在的區(qū)間是()A. B. C. D.3.《算數書》竹簡于上世紀八十年代在湖北省江陵縣張家山出土,這是我國現存最早的有系統(tǒng)的數學典籍.其中記載有求“囷蓋”的術:“置如其周,令相承也.又以高乘之,三十六成一”.該術相當于給出了由圓錐的底面周長與高,計算其體積的近似公式.它實際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當于將圓錐體積公式中的圓周率近似取為()A. B. C. D.4.某歌手大賽進行電視直播,比賽現場有名特約嘉賓給每位參賽選手評分,場內外的觀眾可以通過網絡平臺給每位參賽選手評分.某選手參加比賽后,現場嘉賓的評分情況如下表,場內外共有數萬名觀眾參與了評分,組織方將觀眾評分按照,,分組,繪成頻率分布直方圖如下:嘉賓評分嘉賓評分的平均數為,場內外的觀眾評分的平均數為,所有嘉賓與場內外的觀眾評分的平均數為,則下列選項正確的是()A. B. C. D.5.在四邊形中,,,,,,點在線段的延長線上,且,點在邊所在直線上,則的最大值為()A. B. C. D.6.在中所對的邊分別是,若,則()A.37 B.13 C. D.7.的展開式中的系數是-10,則實數()A.2 B.1 C.-1 D.-28.設,,,則、、的大小關系為()A. B. C. D.9.已知向量,若,則實數的值為()A. B. C. D.10.已知,函數在區(qū)間內沒有最值,給出下列四個結論:①在上單調遞增;②③在上沒有零點;④在上只有一個零點.其中所有正確結論的編號是()A.②④ B.①③ C.②③ D.①②④11.已知集合,若,則實數的取值范圍為()A. B. C. D.12.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.二項式的展開式中項的系數為_____.14.某學習小組有名男生和名女生.若從中隨機選出名同學代表該小組參加知識競賽,則選出的名同學中恰好名男生名女生的概率為___________.15.在的展開式中,各項系數之和為,則展開式中的常數項為__________________.16.雙曲線的左右頂點為,以為直徑作圓,為雙曲線右支上不同于頂點的任一點,連接交圓于點,設直線的斜率分別為,若,則_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,四邊形為直角梯形,,,,,,為線段上一點,滿足,為的中點,現將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面;(2)能否在線段上找到一點(端點除外)使得直線與平面所成角的正弦值為?若存在,試確定點的位置;若不存在,請說明理由.18.(12分)為迎接2022年冬奧會,北京市組織中學生開展冰雪運動的培訓活動,并在培訓結束后對學生進行了考核.記表示學生的考核成績,并規(guī)定為考核優(yōu)秀.為了了解本次培訓活動的效果,在參加培訓的學生中隨機抽取了30名學生的考核成績,并作成如下莖葉圖:(Ⅰ)從參加培訓的學生中隨機選取1人,請根據圖中數據,估計這名學生考核優(yōu)秀的概率;(Ⅱ)從圖中考核成績滿足的學生中任取2人,求至少有一人考核優(yōu)秀的概率;(Ⅲ)記表示學生的考核成績在區(qū)間的概率,根據以往培訓數據,規(guī)定當時培訓有效.請根據圖中數據,判斷此次中學生冰雪培訓活動是否有效,并說明理由.19.(12分)已知如圖1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D為AC中點,AEBD于E,延長AE交BC于F,將△ABD沿BD折起,使平面ABD平面BCD,如圖2所示。(Ⅰ)求證:AE平面BCD;(Ⅱ)求二面角A-DC-B的余弦值;(Ⅲ)求三棱錐B-AEF與四棱錐A-FEDC的體積的比(只需寫出結果,不要求過程).20.(12分)每年的寒冷天氣都會帶熱“御寒經濟”,以交通業(yè)為例,當天氣太冷時,不少人都會選擇利用手機上的打車軟件在網上預約出租車出行,出租車公司的訂單數就會增加.下表是某出租車公司從出租車的訂單數據中抽取的5天的日平均氣溫(單位:℃)與網上預約出租車訂單數(單位:份);日平均氣溫(℃)642網上預約訂單數100135150185210(1)經數據分析,一天內平均氣溫與該出租車公司網約訂單數(份)成線性相關關系,試建立關于的回歸方程,并預測日平均氣溫為時,該出租車公司的網約訂單數;(2)天氣預報未來5天有3天日平均氣溫不高于,若把這5天的預測數據當成真實的數據,根據表格數據,則從這5天中任意選取2天,求恰有1天網約訂單數不低于210份的概率.附:回歸直線的斜率和截距的最小二乘法估計分別為:21.(12分)已知,,且.(1)求的最小值;(2)證明:.22.(10分)設數列,的各項都是正數,為數列的前n項和,且對任意,都有,,,(e是自然對數的底數).(1)求數列,的通項公式;(2)求數列的前n項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

分別求得所有基本事件個數和滿足題意的基本事件個數,根據古典概型概率公式可求得結果.【詳解】從“八音”中任取不同的“兩音”共有種取法;“兩音”中含有打擊樂器的取法共有種取法;所求概率.故選:.【點睛】本題考查古典概型概率問題的求解,關鍵是能夠利用組合的知識求得基本事件總數和滿足題意的基本事件個數.2、B【解析】

根據二次函數圖象的對稱軸得出范圍,軸截距,求出的范圍,判斷在區(qū)間端點函數值正負,即可求出結論.【詳解】∵,結合函數的圖象可知,二次函數的對稱軸為,,,∵,所以在上單調遞增.又因為,所以函數的零點所在的區(qū)間是.故選:B.【點睛】本題考查二次函數的圖象及函數的零點,屬于基礎題.3、C【解析】

將圓錐的體積用兩種方式表達,即,解出即可.【詳解】設圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點睛】本題利用古代數學問題考查圓錐體積計算的實際應用,考查學生的運算求解能力、創(chuàng)新能力.4、C【解析】

計算出、,進而可得出結論.【詳解】由表格中的數據可知,,由頻率分布直方圖可知,,則,由于場外有數萬名觀眾,所以,.故選:B.【點睛】本題考查平均數的大小比較,涉及平均數公式以及頻率分布直方圖中平均數的計算,考查計算能力,屬于基礎題.5、A【解析】

依題意,如圖以為坐標原點建立平面直角坐標系,表示出點的坐標,根據求出的坐標,求出邊所在直線的方程,設,利用坐標表示,根據二次函數的性質求出最大值.【詳解】解:依題意,如圖以為坐標原點建立平面直角坐標系,由,,,,,,,因為點在線段的延長線上,設,解得,所在直線的方程為因為點在邊所在直線上,故設當時故選:【點睛】本題考查向量的數量積,關鍵是建立平面直角坐標系,屬于中檔題.6、D【解析】

直接根據余弦定理求解即可.【詳解】解:∵,∴,∴,故選:D.【點睛】本題主要考查余弦定理解三角形,屬于基礎題.7、C【解析】

利用通項公式找到的系數,令其等于-10即可.【詳解】二項式展開式的通項為,令,得,則,所以,解得.故選:C【點睛】本題考查求二項展開式中特定項的系數,考查學生的運算求解能力,是一道容易題.8、D【解析】

因為,,所以且在上單調遞減,且所以,所以,又因為,,所以,所以.故選:D.【點睛】本題考查利用指對數函數的單調性比較指對數的大小,難度一般.除了可以直接利用單調性比較大小,還可以根據中間值“”比較大小.9、D【解析】

由兩向量垂直可得,整理后可知,將已知條件代入后即可求出實數的值.【詳解】解:,,即,將和代入,得出,所以.故選:D.【點睛】本題考查了向量的數量積,考查了向量的坐標運算.對于向量問題,若已知垂直,通常可得到兩個向量的數量積為0,繼而結合條件進行化簡、整理.10、A【解析】

先根據函數在區(qū)間內沒有最值求出或.再根據已知求出,判斷函數的單調性和零點情況得解.【詳解】因為函數在區(qū)間內沒有最值.所以,或解得或.又,所以.令.可得.且在上單調遞減.當時,,且,所以在上只有一個零點.所以正確結論的編號②④故選:A.【點睛】本題主要考查三角函數的圖象和性質,考查函數的零點問題,意在考查學生對這些知識的理解掌握水平.11、A【解析】

解一元二次不等式化簡集合的表示,求解函數的定義域化簡集合的表示,根據可以得到集合、之間的關系,結合數軸進行求解即可.【詳解】,.因為,所以有,因此有.故選:A【點睛】本題考查了已知集合運算的結果求參數取值范圍問題,考查了解一元二次不等式,考查了函數的定義域,考查了數學運算能力.12、B【解析】

列出每一次循環(huán),直到計數變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點睛】本題考查由程序框圖求輸出的結果,要注意在哪一步退出循環(huán),是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、15【解析】

由題得,,令,解得,代入可得展開式中含x6項的系數.【詳解】由題得,,令,解得,所以二項式的展開式中項的系數為.故答案為:15【點睛】本題主要考查了二項式定理的應用,考查了利用通項公式去求展開式中某項的系數問題.14、【解析】

從7人中選出2人則總數有,符合條件數有,后者除以前者即得結果【詳解】從7人中隨機選出2人的總數有,則記選出的名同學中恰好名男生名女生的概率為事件,∴故答案為:【點睛】組合數與概率的基本運用,熟悉組合數公式15、【解析】

利用展開式各項系數之和求得的值,由此寫出展開式的通項,令指數為零求得參數的值,代入通項計算即可得解.【詳解】的展開式各項系數和為,得,所以,的展開式通項為,令,得,因此,展開式中的常數項為.故答案為:.【點睛】本題考查二項展開式中常數項的計算,涉及二項展開式中各項系數和的計算,考查計算能力,屬于基礎題.16、【解析】

根據雙曲線上的點的坐標關系得,交圓于點,所以,建立等式,兩式作商即可得解.【詳解】設,交圓于點,所以易知:即.故答案為:【點睛】此題考查根據雙曲線上的點的坐標關系求解斜率關系,涉及雙曲線中的部分定值結論,若能熟記常見二級結論,此題可以簡化計算.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)存在點是線段的中點,使得直線與平面所成角的正弦值為.【解析】

(1)在直角梯形中,根據,,得為等邊三角形,再由余弦定理求得,滿足,得到,再根據平面平面,利用面面垂直的性質定理證明.(2)建立空間直角坐標系:假設在上存在一點使直線與平面所成角的正弦值為,且,,求得平面的一個法向量,再利用線面角公式求解.【詳解】(1)證明:在直角梯形中,,,因此為等邊三角形,從而,又,由余弦定理得:,∴,即,且折疊后與位置關系不變,又∵平面平面,且平面平面.∴平面,∵平面,∴平面平面.(2)∵為等邊三角形,為的中點,∴,又∵平面平面,且平面平面,∴平面,取的中點,連結,則,從而,以為坐標原點建立如圖所示的空間直角坐標系:則,,則,假設在上存在一點使直線與平面所成角的正弦值為,且,,∵,∴,故,∴,又,該平面的法向量為,,令得,∴,解得或(舍),綜上可知,存在點是線段的中點,使得直線與平面所成角的正弦值為.【點睛】本題主要考查面面垂直的性質定理和向量法研究線面角問題,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.18、(Ⅰ)(Ⅱ)(Ⅲ)見解析【解析】

(Ⅰ)根據莖葉圖求出滿足條件的概率即可;(Ⅱ)結合圖表得到6人中有2個人考核為優(yōu),從而求出滿足條件的概率即可;(Ⅲ)求出滿足的成績有16個,求出滿足條件的概率即可.【詳解】解:(Ⅰ)設這名學生考核優(yōu)秀為事件,由莖葉圖中的數據可以知道,30名同學中,有7名同學考核優(yōu)秀,所以所求概率約為(Ⅱ)設從圖中考核成績滿足的學生中任取2人,至少有一人考核成績優(yōu)秀為事件,因為表中成績在的6人中有2個人考核為優(yōu),所以基本事件空間包含15個基本事件,事件包含9個基本事件,所以(Ⅲ)根據表格中的數據,滿足的成績有16個,所以所以可以認為此次冰雪培訓活動有效.【點睛】本題考查了莖葉圖問題,考查概率求值以及轉化思想,是一道常規(guī)題.19、(Ⅰ)證明見解析;(Ⅱ);(Ⅲ)1:5【解析】

(Ⅰ)由平面ABD⊥平面BCD,交線為BD,AE⊥BD于E,能證明AE⊥平面BCD;(Ⅱ)以E為坐標原點,分別以EF、ED、EA所在直線為x軸,y軸,z軸,建立空間直角坐標系E-xyz,利用向量法求出二面角A-DC-B的余弦值;(Ⅲ)利用體積公式分別求出三棱錐B-AEF與四棱錐A-FEDC的體積,再作比寫出答案即可.【詳解】(Ⅰ)證明:∵平面ABD⊥平面BCD,交線為BD,又在△ABD中,AE⊥BD于E,AE?平面ABD,∴AE⊥平面BCD.(Ⅱ)由(1)知AE⊥平面BCD,∴AE⊥EF,由題意知EF⊥BD,又AE⊥BD,如圖,以E為坐標原點,分別以EF、ED、EA所在直線為x軸,y軸,z軸,

建立空間直角坐標系E-xyz,設AB=BD=DC=AD=2,

則BE=ED=1,∴AE=,BC=2,BF=,則E(0,0,0),D(0,1,0),B(0,-1,0),A(0,0,),

F(,0,0),C(,2,0),,,由AE⊥平面BCD知平面BCD的一個法向量為,設平面ADC的一個法向量,則,取x=1,得,∴,∴二面角A-DC-B的平面角為銳角,故余弦值為.

(Ⅲ)三棱錐B-AEF與四棱錐A-FEDC的體積的比為:1:5.【點睛】本題考查線面垂直的證明、幾何體體積計算、二面角有關的立體幾何綜合題,屬于中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論