艾昆緯-人工智能在QARA過程現(xiàn)實中的應用 Applying AI in Todays Reality of QARA Processes 2024_第1頁
艾昆緯-人工智能在QARA過程現(xiàn)實中的應用 Applying AI in Todays Reality of QARA Processes 2024_第2頁
艾昆緯-人工智能在QARA過程現(xiàn)實中的應用 Applying AI in Todays Reality of QARA Processes 2024_第3頁
艾昆緯-人工智能在QARA過程現(xiàn)實中的應用 Applying AI in Todays Reality of QARA Processes 2024_第4頁
艾昆緯-人工智能在QARA過程現(xiàn)實中的應用 Applying AI in Todays Reality of QARA Processes 2024_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

IQVIA

TECHNOLOGIES

ExecutiveSummary

ApplyingAIinToday’s

RealityofQARAProcesses

AIinMedTechandpracticalrealitiesinQARA

ERDITGREMI,DirectorRegulatoryAffairs,Philips

DENISEMEADE,HealthcareandLifesciencesTechnologyLeader,Microsoft

RAJESHMIRSA,Principal,LifeSciencesQualityandRegulatoryServicesLeader,KPMGLLPCARLOSLUGO,VicePresidentofGlobalProductSafety&Surveillance,Philips

DONSOONG,SeniorDirectorandGeneralManager,QualityManagementSolutions,IQVIATechnologiesLORIELLIS,HeadofInsights,BioSpace(Moderator)

Tableofcontents

Keytakeaways1

Overview1

Context1

BeforetalkingaboutAI,wemustunderstandtheAIplayingfield1

ThelifesciencesandhealthcareindustriesintheU.S.arebehindothercountriesand

industriesinAIadoption2

Thetechnologyisonlyasgoodasyourdata2

Cleandatastartswithvalidation,buthandlingreal-worlddata(RWD)ismessy3

OrganizationsareeducatingQARAprofessionalstounderstandAIandpreparingfor

thefuture3

Conclusion4

Abouttheauthor5

Keytakeaways

?BeforetalkingaboutAI,wemustunderstandtheAI

playingfield.

?ThelifesciencesandhealthcareindustriesintheU.S.arebehindothercountriesandindustriesinAIadoption.

?Thetechnologyisonlyasgoodasyourdata.

?Cleandatastartswithvalidation,buthandlingreal-

worlddata(RWD)ismessy.

?Organizationsareeducatingqualityassuranceandregulatoryaffairs(QARA)specialiststounderstandAIandpreparingforthefuture.

Overview

Thegloballifesciencesindustryhasbeenslowto

adoptAI,particularlygenerativeAI(GenAI).AsGenAIbecomesmorewidelyadopted,QARAprofessionalsfacechallengesinthespaceandinhowitisappliedtoQualityandRegulatoryprocesses,whichrequiresanunderstandingofAItosuccessfullynavigate

datacleansing.

Context

QARAprofessionalsneedtocollaboratewithother

professionalstonavigatethechallengesthatAIbringsandreapthetechnology’sbenefitstoimprovepatientoutcomesandcommercialperformance.

BeforetalkingaboutAI,wemustunderstandtheAI

playingfield

ThepaneldiscussionbeganwithDeniseMeade,

healthcareandlifesciencestechnologyleaderat

Microsoft,settingilluminatingtheAIplayingfield

fortheaudience.SheexplainedthatAIisabroad

category.Machinelearning(ML)discussionstypicallyinvolvetheneedtotrain,testandreleasebasedonlargedatasetswhilelargelanguagemodels(LLMs),whicharealreadytrained,needtobegroundedin

data.ShehighlightedthatGenAIhashadagiantleapforwardinthelastfewyears.

“Toputitintoperspective,ittook

Netflixthreeandhalfyearstoreachonemillionusers.IttookgenerativeAIfivedays.”

—DeniseMeade,HealthcareandLifesciencesTechnologyLeader,Microsoft

TherearetworeasonshowquicklyGenAIwasadopted,Meadeexplained:accessibilityandvalue.“Essentiallyacoupleofcompaniestookabigleapforwardby

investinginitsotherestofusdonotneedtotraineverytimeyouuseLLMS,suchasChatGPT.Itcanbeappliedquicklyandeasilytogetinformation.”

Meadecautionedthatusersneedtohavesome

understandingofhowGenAIworksandhowtouseiteffectively.However,thereisadifferencebetweenLLMsandsmalllanguagemodels(SLMs),andwhatisbeingdonewithtraditionalAIcommonlyusedin

digitalmedicaldevices,roboticsandultrasoundtechnology.

“Withthesemodels,youaretakingwhathasalreadybeentrainedandgroundingitinyourowndata,”

Meadeexplained.“Abigimportantpartisthatdata

isaportionandsuperimportanttotraininmachine

learning.ButforGenAI,itismoreimportanttogroundthedataorgroundtheanswersinthedatathatyou

have.Youdon’tneedtotrainthem.”

|1

Thelifesciencesand

healthcareindustriesin

theU.S.arebehindother

countriesandindustriesinAIadoption

AspointedoutbothbyPhilips’ErditGremi,directorofregulatoryaffairs,andCarlosLugo,thecompany’svicepresidentofglobalproductsafety&surveillance,the

lifesciencesandhealthcareindustriesarebehindin

AIadoption.

“AlthoughwesaythatUnitedStateslifesciencesandhealthcareindustrysayisadvancedininnovationandtechnology,weareextremelybehindtherestoftheworldandotherindustries,”Lugoexplained.“AsmuchasIunderstandwewanttocontinuetobeopento

usingartificialintelligence,there’sstillthatregulatorystop.Ican’teventellyouhowoftenIheardFDAsay,‘Weloveit.Wewanttolearnmoreaboutit.’Westill

needadecidingfactor.Westillneedthathumaninteractiontosayyesorno.”

WhiletheFDAishesitanttoadoptAI,regulatorsin

othercountriesarenot.Australia’sTherapeuticGoodsAdministration(TGA)hasbeensteadilyincreasingitsadoptionofAIandBigPharmaareapproachingPhilipstopartnerinthespace.

AspointedoutbyGremi,LLMsandAIingeneralrequireafundamentallydifferentproductdesignapproach,onenotbasedontraditionalrolesorhierarchicalif-thenstatements.

“Howdoyoumakesurethatthe

datathatyouhaveinputintothisAIorintothismodelaretruly

representativeofallofthetypesofpatientsorcasesthatyouwillseethroughouttheentirelifetimeofthisproduct?”

—ErditGremi,DirectorRegulatoryAffairs,Philips

Instead,regulatorsandproductdesignersneedtoconsiderotherchallenges.

“Areyoustatisticallysoundinthatjudgment,andhaveyouacquireditsufficientlysothatsomethingthat

youmissedtodayinyourvaluationmodel,oryourvalidationsetdoesn’tbecometheadverseeventsayearfromnow?”Gremimused.

Thetechnologyisonlyasgoodasyourdata

Aspreviouslymentioned,GenAIandLLMsarealreadytrainedbutneedtobegroundedindata.ThisiswhereQARAprofessionalsneedtobesavvyenoughto

understandthedataanddatasources.DonSoong,

seniordirectorandgeneralmanagerofquality

managementsolutionsatIQVIA,suggestedthatQARAprofessionalsanddatascientistscollaborate.“Thedatascientistisgoingtounderstandallthetechniquesof

cleansingdata,buttheQARAisgoingtounderstandthenuancesinthedata,sotheymustpartner.”

PhilipshasQARAanddatascientistsinthesame

departmenttopromotecollaborationandreduce

downtime.Withthesetwotypesofexpertiseworkingtogether,researcherscangainatrueunderstandingofthedata,thedemographics,geographyandotherelementsthatbiasthedata.Tomitigatethatbias

throughcleansing,thetwodepartmentsbalancethedatasotherearethesamenumberofparameters

percategory,whichwillgiveafairresponsewhenthealgorithmsrun.

RajeshMirsa,principaloflifesciencesqualityand

regulatoryservicesleaderatKPMGLLP,wasnot

surprisedthatthediscussionturnedtowardsdata

quality.“I’vebeendoingthisforcloseto30yearsandwehavebeenhearingthesamethingforlast30years,thedataqualityisaproblem.Nothinghaschangedthelast30years.”Mirsabelievesthattheindustryneedstorethinkitsstrategy,puttinginplaceapproachesthatwillgeneratedataofsufficientquality.“Dataisnota

staticthing.Itchanges.”

2|ApplyingAIinToday’sRealityofQARAProcesses

Cleandatastartswith

validation,buthandlingReal-WorldData(RWD)ismessy

ToLugo,thekeyisdatavalidation.“Weknowthatdatamaynotbe100%pure,butcanwevalidatewhatwe

haveandmoveforward?”Beingabletoaskandanswer

thisquestionensurestherightqualitydecisions

aremade.Gremiaddedthatdataacquisitionexerciseistrulyidealbutnotalwaysfeasible.Thebest

availabletypeofdataisreal-worlddata(RWD),asitisrepresentativeofwhatthealgorithmormodelbeingdevelopedisgoingtobeencounteringintheworld.“Relyingonreal-worlddataandunderstandingwhatyoucansiftthroughandalreadyhaveavailablein

somewaysisactuallymorerepresentativethanatrueclinicalvalidationofaprospectivestudybecauseitishappeninginclinics,”Gremiexplained.

Mirsaemphasizedthatcorrectdataarecriticalwhendealingwithcomplaintsorotherspecifictasks.In

addition,hesaidthatthereisacertainamountofacceptableriskwhendealingwithdatasinceitwillneverbe100%pure.Heexplainedthequestionsheproposestohisteamsandclients.

“WhatisthepurposeofthedatathatI’mtryingtodoifI’musingforsomesortofalgorithmicmodeling?

WhatsortofhypothesisamItryingtocreate?”In

somecases,hesaid,“Idon’tneed100%correctdata;Icanlivewith70%or80%.ThenItakeoutthe20%or

30%andoutliersIbelievearenotcorrect.Iwillgettothesamehypothesisofwhatismypatternislookingfor.”Whendesigningapattern,hesaidheaddressesthedatainconsistenciesbytakingthemoutofthe

calculationswhilebuildingthemodel.

RWDhasthepotentialtobecollectedinamore

pristinemanner.Meadespokefromexperiencewith

companiesthatcometoMicrosofttofixthecollectionofRWDoranydata.“Oftentimeswhatweendupdoingattheendoftheprojectisactuallystartingmoving

folksfrompaperprocessesjusttodigitalprocesses,”Meadenoted.“Itisamazinghowmanytimeswhenyougointoafactoryandpeopleareusingapenandpapertocollectdata,whichisthenlatertranscribedinto

asystem.”

OrganizationsareeducatingQARAprofessionalsto

understandAIandpreparingforthefuture

ThebiggestchallengeishowtokeepinfrontofAI.

Lugonotedthatconferencesandprivateeventsare

keytohelpingtheindustryadoptAI.Ascompanies

enterthespacemoreaggressive,Lugosaidhefinds

thatitisdifficulttoopendoorsandlowerwalls

becauselifesciencesareguardedaswholeinthe

UnitedStates,unliketherestoftheworld,whenit

comestoAIadoption.Theprocessisslow.However,

hedidnoteincreasingcybersecurityconcernsas

aconsequenceoftechnologicaladvancesincethe

discussiontookplaceduringtheCrowdStrikeincident,whichcreatedflightissuesforbothpanelistsand

audiencemembers.Atthetimeofthediscussion,therewerestill600flightscanceledthedaypriorbyDelta.

Mirsasuggestedthatthemostpressingconcernis

theworkforce.Inthecurrentenvironment,QARA

professionals’workloadconsistsof30%to40%

paperwork.Hesuggestedthatthisis15to20years

behindthetechnologicalcurvecomparedtoother

industries.ThisisindirectoppositiontoFDA’s

approvalof150AI-basedproductswithinthelasteightmonths,whichbringsittoatotalofover700productsbeingapprovedtodate.Whilestillbehindother

industries,QARAprocessesthataredependenton

paperworkslowdowntheprocessandwillnotbeabletoeffectivelyhandletheinfluxofinformationastheindustrycontinuestoblendAIintoscience.

Additionally,thefutureworkforcehasbeenraisedonAIsopaperprocessesmaybeforeigntothem.Mirsaquestioned,“Howdowetraintheworkforce?And

that’saveryimmediateproblemtodayforcompaniesontheworkforceperspective.”Fortheindustryto

moveforward,theworkplacemustmoveawayfrompaper.

LugofurtheremphasizedMirsa’spoint.Becausetheupcomingworkforcehasbeenraisedwithtechnology,trainingbecomesdifficultwhenworkingwith

newhires.Onekeyexamplehegavewasthrough

|3

communication.Lugoexplained,“IfI’mtryingtogetoneofmyengineerswhoIjustrecentlyhired,I’m

calling,callingandcalling.Heorsheneverpicksupthephone,butthemomentIsendatextoranemail,theresponseisimmediate.”ThequestionforLugoishowdoyoutrainanewhirewiththatcommunicationstyle.ItisagapheisactivelyworkingonfiguringoutforPhilips.

Soongfocusedonthecostefficiencyconcernsforleadership.

“Theindustryisdrivingustobemorecostefficient.Domorewithless,soleadershipwantsAIto

beused.”

Conclusion

QARAprocessesandproceduresneedtoevolvetoadopttechnology.Thelifesciencesandhealthcare

industryinUnitedStatesisbehindbothother

industriesandcountriesinadoption.However,there

isclearlyaneedforAI.Theupcomingworkforceis

comfortablewithAIbutwillneedtraining.ThistrainingcanonlybecompletedbythoseQARAprofessionals

whoareabletoclosetheknowledgegapbetweenthecurrentpaperprocesswiththetechnologicalprocessesofthefuture.Ultimately,theadoptionofAIintoQARAprocessesha

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論