版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
EMERGINGHYDROGEN
ENERGYTECHNOLOGY
ANDGLOBALMOMENTUM
DanMillisonandKee-YungNam
NO.96
September2024
ADBSUSTAINABLEDEVELOPMENTWORKINGPAPERSERIES
ASIANDEVELOPMENTBANK
ADBSustainableDevelopmentWorkingPaperSeries
EmergingHydrogenEnergyTechnologyandGlobalMomentum
DanMillisonandKee-YungNamNo.96|September2024
TheADBSustainableDevelopmentWorking
PaperSeriespresentsdatafromongoing
researchtoencourageexchangeofideas
andelicitcommentandfeedbackabout
developmentissuesinAsiaandthePacific.
TheviewsexpressedarethoseoftheauthorsanddonotnecessarilyreflecttheviewsandpoliciesofADBoritsBoardofGovernors
orthegovernmentstheyrepresent.
DanMillisonisaconsultantfortheEnergySectorOffice,supportingAsianDevelopmentBank(ADB)programs
forinnovativetechnologyandbusinessmodelsinenergysectorandclimatechangeoperations.Hehasmorethan35yearsofprofessionalexperience,includingmorethan20yearsworkingoncleanenergyandclimatechange
financing.
Kee-YungNamisprincipalenergyeconomistinthe
EnergySectorGroup(SG-ENE),SectorsGroupof
ADB,whereheconceptualizesdevelopmentofADB’s
energysectorstrategiesandpolicies,andadvisesin
theformulationoftheenergysectorlendingandnon-
lendingpipelineofprojects.Heisalsoresponsiblefor
theEnergySectorTrustFundsandundertakesanalysis
andassessmentofkeyenergysectorissuesparticularlyincleanenergytechnologies.
ASIANDEVELOPMENTBANK
CreativeCommonsAttribution3.0IGOlicense(CCBY3.0IGO)
?2024AsianDevelopmentBank
6ADBAvenue,MandaluyongCity,1550MetroManila,Philippines
Tel+63286324444;Fax+63286362444
Somerightsreserved.Publishedin2024.
ISSN2789-0619(print),2789-0627(PDF)PublicationStockNo.WPS240403-2
DOI:
/10.22617/WPS240403-2
TheviewsexpressedinthispublicationarethoseoftheauthorsanddonotnecessarilyreflecttheviewsandpoliciesoftheAsianDevelopmentBank(ADB)oritsBoardofGovernorsorthegovernmentstheyrepresent.
ADBdoesnotguaranteetheaccuracyofthedataincludedinthispublicationandacceptsnoresponsibilityforany
consequenceoftheiruse.ThementionofspecificcompaniesorproductsofmanufacturersdoesnotimplythattheyareendorsedorrecommendedbyADBinpreferencetoothersofasimilarnaturethatarenotmentioned.
Bymakinganydesignationoforreferencetoaparticularterritoryorgeographicareainthisdocument,ADBdoesnotintendtomakeanyjudgmentsastothelegalorotherstatusofanyterritoryorarea.
ThispublicationisavailableundertheCreativeCommonsAttribution3.0IGOlicense(CCBY3.0IGO)
/licenses/by/3.0/igo/
.Byusingthecontentofthispublication,youagreetobeboundbythetermsofthislicense.Forattribution,translations,adaptations,andpermissions,pleasereadtheprovisionsandtermsofuseat
/terms-use#openaccess
.
ThisCClicensedoesnotapplytonon-ADBcopyrightmaterialsinthispublication.Ifthematerialisattributed
toanothersource,pleasecontactthecopyrightownerorpublisherofthatsourceforpermissiontoreproduceit.ADBcannotbeheldliableforanyclaimsthatariseasaresultofyouruseofthematerial.
Pleasecontact
pubsmarketing@
ifyouhavequestionsorcommentswithrespecttocontent,orifyouwishtoobtaincopyrightpermissionforyourintendedusethatdoesnotfallwithintheseterms,orforpermissiontousetheADBlogo.
TheADBSustainableDevelopmentWorkingPaperSeriespresentsdata,information,and/orfindingsfromongoing
researchandstudiestoencourageexchangeofideasandelicitcommentandfeedbackaboutdevelopmentissuesinAsiaandthePacific.Sincepapersinthisseriesareintendedforquickandeasydissemination,thecontentmayormaynotbefullyeditedandmaylaterbemodifiedforfinalpublication.
CorrigendatoADBpublicationsmaybefoundat
/publications/corrigenda
.
Notes:
Inthispublication,“$”referstoUnitedStatesdollars.
ADBrecognizes“Brunei”as“BruneiDarussalam,”“China”asthePeople’sRepublicofChina,“Korea”and“Korean”astheand/orfromtheRepublicofKorea.
CONTENTS
TABLESANDFIGURES
iv
ACKNOWLEDGMENTS
v
ABBREVIATIONS
vi
WEIGHTSANDMEASURES
vii
ABSTRACT
viii
I.BACKGROUNDANDCONTEXT
1
II.THEGREENHYDROGENVALUECHAIN
2
A.AdvantagesofGreenHydrogen
5
B.Production
7
C.TransmissionandDistribution
12
D.HydrogenStorage
15
E.EnvironmentalConsiderations
20
F.EndUses—TheMeritOrder
20
III.OVERVIEWOFDEVELOPMENTSINGREENHYDROGEN
26
A.BusinessandCommercialOperations
26
B.StandardsandRegulationsBarriers
27
C.IncentivesforIncubatingIndustryGrowth
29
IV.CHALLENGESOFTRANSITIONINGTOGREENHYDROGEN
31
A.CostofProductionandFinancialViability
31
B.RegulationsandStandards
35
C.RoadMapsandTargets
36
V.OPPORTUNITIESFORDEVELOPINGMEMBERCOUNTRIES
39
A.NationalEnergyTransitionRoadMaps,Strategies,andTargets
39
B.OverviewofOpportunitiesinDevelopingMemberCountries
40
C.FuturePolicyConsiderations
44
D.HydrogenTradingMarketPotential
45
VI.THEWAYFORWARD
48
REFERENCES
53
TABLESANDFIGURES
TABLES
1CharacteristicsofExistingElectrolyzerTechnologies
2MeritOrderandPotentialADBSupport
3NotableGreenHydrogenDevelopment
4RegulatoryandStandardsBarriers
5TechnicalandTrainingBarriers
6HydrogenIncentivesinEuropeandNorthAmerica
7HydrogenIncentivesinAsiaandAustralia
8KeyTechnicalFactorsAffectingFinancialViabilityofaHydrogenProjectandRecommendedActions
9KeyPolicyandOtherFactorsAffectingFinancialViabilityandRecommendedActions
10HydrogenTargetsandGovernmentInitiativesinEurope
11HydrogenTargetsandGovernmentInitiativesinAsiaandAustralia
12ADBHydrogenActivitiesasofMay2023
FIGURES
1HydrogenValueChain
2GlobalCarbonDioxideEmissionsbyEnergySector
3ElectrolyzerInstalledCapacity,2020-2050
4HydrogenSupplyChain
5HydrogenCycle
6ASimplifiedOverviewofanElectrolyzer
7LevelizedCostofHydrogeninEuropeBeforeandAftertheRussianInvasionofUkraine
8CostFactorsandLevelizedCostsofProduction
9KeyElementsofGreenHydrogenProductionProjects
10PolyethylenePipelinesUsedtoDistributeNaturalGas
11DibenzyltolueneLiquidOrganicHydrogenCarrierProcess
12HydrogenMetalHydrideCylinders
13LiquifiedHydrogenTank
14AnExampleofSaltCavern
15Ammonia-FueledTractor
16ElectrolyzersasGridManagementTools
17GreenOxygenStoredandUsed,IncreasingHydrogenProjectValue
18GreenHydrogenMeritOrder
19HydrogenSteelmaking
20KazakhstanSolar+WindtoHydrogenPotential
21IndonesiaTangguhHydrogenProductionScenario
22OffshoreRenewableEnergytoHydrogenPotentialinSelectADBDevelopingMemberCountries
23OffshoreRenewableEnergyMonetizationwith“Power-to-X”BusinessModel
24HydrogenCorridorsAcrossAllContinents
25TransitionfromNoncompetitivetoTradingHub
26ADB–ISAFrameworktoAssessEcosystemReadinessinCountriestoAdoptHydrogen
27ServicesofVirtualGlobalCenterofExcellenceforGreenHydrogen
8
24
27
28
28
30
30
32
34
37
38
49
3
3
4
5
6
7
10
11
12
13
14
15
16
17
17
18
19
21
23
41
42
43
44
46
47
50
51
ACKNOWLEDGMENTS
Thispaperbenefitedfrominputs,insights,andfeedbackfromcolleaguesacrossADB,includingpeerreviewersKaoruOginoandPradeepTharakan,EnergySectorOffice(SG-ENE).OverallguidancewasprovidedbyEnergySeniorDirectorPriyanthaWijayatungawithsupportfromPrincipalEnergyEconomistKee-YungNamandSeniorEnergyOfficerCharityTorregosa.Theproductionteamconsisted
ofCopyeditorMa.TheresaMercado;layoutanddesignbyAsiatype,Inc.
ABBREVIATIONS
ADB
–
AsianDevelopmentBank
CHP
–
combinedheatandpower
CO2
–
carbondioxide
CUF
–
capacityutilizationfactor
DMC
–
developingmembercountry
EU
–
EuropeanUnion
GHG
–
greenhousegas
IEA
–
InternationalEnergyAgency
ISA
–
InternationalSocietyofAutomation
LNG
–
liquefiednaturalgas
LOHC
–
liquidorganichydrogencarrier
OTEC
–
oceanthermalenergyconversion
PEM
–
protonexchangemembrane
PRC
–
People’sRepublicofChina
SMR
–
steam-methanereforming
US
–
UnitedStates
–
Btu
–
kg
–
km
–
–
MWMWh
–
tCO2e
–
TWh
WEIGHTSANDMEASURES
Britishthermalunit
kilogramkilometer
megawatt
megawatt-hour
tonsofcarbondioxideequivalentterawatt-hour
ABSTRACT
Thispaperprovidesanoverviewoftheemerginghydrogeneconomywithattentiontothemeritorderforhydrogenapplicationsandprospectiveinvestments,whichmightbesupportedbytheAsianDevelopmentBank(ADB).Thispaperisnotaguidancedocumentnorisitadesignhandbook.Rather,itprovidesbasicinformationonglobalcontext,technologies,costs,andprospectivedevelopmentsinADB’sdevelopingmembercountries.Thispaperaimstohelpdecision-makersnavigatethegreenhydrogenvaluechainandunderstandwhatisrequiredforsuccessfulimplementationandreapthepotentialrewardsintheenergytransition.
Today,mosthydrogenisproducedfromnaturalgaswithemissionsofabout9tonsofcarbondioxide
(CO2)pertonofhydrogen.In2021,greenhousegas(GHG)emissionsfromhydrogenwereestimatedat
around900milliontonsofCO2peryear,about1.8%ofGHGemissions.
Greenhydrogenisascalableandflexibleenergycarrierproducedbyconvertingrenewableelectricity(electrons)tosplitwaterintohydrogen(protons)andoxygen,whichcanbestoredindefinitelyorconvertedintoothermolecules.Theoxygenby-productcanbesoldintoexistingmarketsdependingonlocaldemand.Hydrogen-derivedchemicals(molecules)canbetransportedinbulkasisthecaseforcrudeoil,naturalgas,refinedpetroleumproducts,andotherchemicals.Likefossilfuels—whichareformedbyacombinationofsolar,biomass,geothermalenergy,andgeologictime—hydrogenisanenergycarrier.Specifically,solar-to-hydrogenmimicsthenaturalprocessesthatcreatefossilfuels,andpotentialusesofgreenhydrogenmimictheexistingglobalhydrocarbonsbusiness.Thescalabilityofintermittentsolarandwindresourcesislimitedbytheabilitytotime-shiftrenewableenergyoutputtomatchdemand,andhydrogenappearstobeascalablesolutionforbothtime-shiftingandlocation-shiftingofrenewableenergy.
Onekilogramofhydrogenhastheenergyequivalentof1gallon(3.94liters)ofgasoline.Thecost-effectivenessofgreenhydrogenproductiondependsonelectricityinputcosts,electrolyzercosts,andelectrolyzerloadfactors.Greenhydrogenproductionmaybecommerciallyviabletodayat$4/kg;although$2/kgistypicallyreferencedasapricebenchmark,$4/kgisatparwithgasolinepricesinmanycountries.Theuseofintermittentversus“baseload”renewableenergydoesnotdictatethecommercialviabilityofgreenhydrogenproduction.Akeyrate-limitingfactorforscalingupgreenhydrogenproductionistheavailabilityofcriticalmetals,specificallyiridiumandplatinumforuseinelectrolyzers.
Fromapolicyperspective,greenhydrogenisenergy-intensiveandisnotthesolutiontoall.Greenhydrogendevelopmentmustbeconsideredinthebroadercontextofrenewableenergydevelopmentandtheneedforacceleratingtheglobalenergytransition.Greenhydrogenisa“power-to-X”businesspropositionbasedonsellingmoleculesratherthansellingelectronsviapowerpurchaseagreements.Today,thereisnoglobalhydrogenmarketanalogoustoglobalcrudeoilandotherhydrocarbons.Therefore,theviabilityofgreenhydrogenproductiondependsprimarilyonelectrolyzercosts,localenergycosts,specificend-useapplications,andwillingnessofhydrogenbuyerstocommittolong-termofftakeagreements(liketraditionalliquefiednaturalgasexportprojects).Hydrogensupplychaindevelopmentisexpectedtocontinueglobally,andasglobalelectrolyzermanufacturingcapacityincreasesavirtuouscycleofdevelopmentmayemerge.
EmergingHydrogenEnergyTechnologyandGlobalMomentum1
I.BACKGROUNDANDCONTEXT
Greenhydrogenisproducedbyelectrolysis,aprocessthatsplitswaterintohydrogenandoxygenthatispoweredbyrenewableenergyorbyreformingbiogas.1Thetechnicallogicforgreenhydrogenisstraightforward:hydrogenproductionfromfossilfuelsisemissions-intensiveandsubjecttovolatilityoffossilfuelprices,whilegreenhydrogenproductionisenergy-intensive2butcreatescostcertainty.Themeritorderforgreenhydrogendeploymentbeginswithreplacementofestablishedfossilhydrogenproductionanduse,followedbydisplacementoffossilfuelsinheavy,hard-to-decarbonizeindustries.Productionofrenewablefuelsfromhydrogenfortransportapplicationsandproductionofhydrogenforlong-termbulkstorageappearlessattractivecomparedtoelectrifiedtransportandevolvingenergystoragetechnologies.Untilthereisaglobalhydrogensupplychainresemblingthatforcrudeoilandrefinedpetroleumproducts,greenhydrogendevelopmentwillbelocation-specific,withdecisionsmadeona“targetsofopportunity”basis.
Fortheforeseeablefuture,theuptakeofgreenhydrogeninvestmentisexpectedtoincreasedramaticallyinAsiaandthePacificregioninbothdevelopedandemergingeconomies.GreenhydrogenhubsaregrowinginAustralia,theEuropeanUnion,andtheMiddleEast.Thepaceandscaleoftheinvestmentremainstobeseenindevelopingcountriesduetoup-front=capitalcosts,limitedrenewableenergydevelopment,andlackofsupportingpoliciesandtechnicalexpertiseinbothpublicandprivateenergycompaniestoestablishafinanciallyviablegreenhydrogensupplychain.Additionalchallengesarehighinitialcostsofproduction,storageandtransportationconstraints,commercialviability,andlimitedmarketwithlarge-scalepurchaseagreementsyettobeseen.
GreenhydrogenwillbepartoftheenergymixiftheAsianDevelopmentBank(ADB)developingmembercountries(DMCs)aretoreachtheirclimategoalsandtransitiontoanet-zeroeconomy.TheInternationalEnergyAgency(IEA)estimatesthatabout34milliontonsperyearofgreenhydrogenwillbeneededby2030tomeetPariscommitments,andabout100milliontonsperyearwillbeneededby2050tomeetnet-zerotargets(IEA2022).Multiplegigawatt-scaleinvestmentswillbeneededacrossthegreenhydrogensupplychainforrenewableenergy,electrolyzersystems,hydrogenstorage,andretrofittingportsandpipelines.AccordingtotheIEAnet-zeroscenario,globalannualinvestmentsinlow-emissionshydrogenstandatabout$500milion,butwouldneedtoincreaseatleasttenfoldby2030.ADBhassupportedmultipleassessmentsinDMCsviatechnicalassistance,butminimalinvestmentoperationshavebeenmadeasofJune2023.
Overall,ADBDMCsthatseektoexploregreenhydrogenwillneedsupportindevelopingpolicies,enhancingknowledgeandtechnicalexpertise,anddevelopingpilotprojectsacrossthehydrogensupplychainandcoveringallrelatedinfrastructurefromproductiontotransmissionanddistributiontodemand-use.Furthermore,bothprivateandstate-ownedoilandgascompanies(e.g.,PertaminainIndonesia,SinopecinthePeople’sRepublicofChina[PRC],andAdaniandRelianceinIndia)andheavyindustriesaredevelopingtheirowndecarbonizationplansandareactivelyassessingpotentialinvestmentsanddevelopinglarge-scalehydrogenprojects.
Hydrogenisrapidlyevolvingglobally,anditisimpossibletocovereverythinginasingledocument.Therefore,thispaperprovidesanoverviewoftheemerginghydrogeneconomywithattentiontothe
1Reformingofbiogasistechnologicallythesameashydrogenproductionfromnaturalgas.Athirdproductionpathwayisthermaldecompositionofwaterintohydrogenandoxygen,whichrequirestemperatureofatleast1,800°C.
2Electrolysisofwatertoproducehydrogenandoxygenrequiresabout50megawatt-hours(MWh)pertonofhydrogenproduced,with8tonsofoxygenby-product.
2ADBSustainableDevelopmentWorkingPaperSeriesNo.96
meritorderforhydrogenapplicationsandprospectiveinvestmentsinDMCsthatmightbesupportedbyADB.
Thispaperisnotaguidancedocumentnorisitadesignhandbook.Rather,itprovideskeyinformationontechnologies,costs,andprospectivedevelopmentsthatmightbesupportedbyADBintheforeseeablefuture.Thispaperaimstohelpdecision-makersnavigatethegreenhydrogenvaluechainandunderstandwhatisrequiredforsuccessfulimplementationandreapthepotentialrewardsintheenergytransition.
II.THEGREENHYDROGENVALUECHAIN
Hydrogenisusedprimarilyasanintermediateproductinpetroleumrefiningandchemicalmanufacturingsuchasintheproductionoffertilizers(e.g.,ammonia).Forpurposesofdiscussioninthispaper,hydrogeniscommonlyclassifiedasfollows(thisclassificationissimplifiedandnotcomprehensive):
(i)Greenhydrogen(or“renewablehydrogen”)isproducedbyelectrolysisofwaterwithrenewableelectricity,atacostrangeofabout$2.7–$5.9/kilogram(kg).Nogreenhousegases(GHGs)areemittedduringtheelectrolysisprocess.Greenhydrogencanalsobeproducedbyreformingbiogas,whichmayhavesomefugitivemethaneemissions.Oxygenisaby-productoftheelectrolysisprocess,with8kgofoxygenforeachkgofhydrogen.GreenhydrogenproductionwasdemonstratedatmegawattscaleatahydropowerplantinNorwayin1929.3
(ii)Grayhydrogenisproducedfromnaturalgas,afossilfuel,bysteam-methanereforming(SMR)atacostaround$1.62/kg,dependingonthepriceofgasandcarbonemissions.Thisproductionprocessresultsinemissionsofabout9.3kgcarbondioxide(CO2)perkgofhydrogen.
(iii)Bluehydrogenusesthesameproductionprocessesasgrayhydrogen,buttheCO2iscapturedandstoredpermanently.Itsproductioncostsaround$2.16/kg,makingitmoreexpensivethangrayhydrogenbutcheaperthangreenhydrogen.WhereCO2storagecapacityisavailable,existinghydrogenproductionfacilitiescouldbeconvertedtobluehydrogen,thusreducinginvestmentcosts.
In2021,globalhydrogenproductionwasabout94milliontonsrecoveringtoabovepre-coronavirusdisease(COVID-19)pandemiclevels(91milliontonsin2019),whichcontainsenergyequaltoabout2.5%ofglobalfinalenergyconsumption.Mostoftheincreasecamefromtraditionalusesinrefiningandindustry,thoughdemandfornewapplicationsgrewtoabout40,000tons(up60%from2020,albeitfromalowbase)(IEA2022).Morethan75%oftheglobalhydrogenmarketisproducedfromnaturalgas(grayhydrogen),whichconsumes6%ofglobalnaturalgasproduction;GHGemissionsareestimatedataround900milliontonsofCO2peryear,about1.8%ofglobalGHGemissionsin2021.4Justunderone-fourth(23%)oftheglobalhydrogenmarketisproducedfromcoal(“brown”hydrogen)consumingabout2%oftheglobalcoalsupply.Theremainingshareofglobalhydrogencomesfromoilandelectricity(
Figure
1).Greenhydrogencurrentlyaccountsforonlyabout0.1%ofoverallhydrogenproduction(WorldEconomicForum2023).
3
4
LinkedIn.
TerjeHauan’sPost
.
GlobalGHGemissionswereabove54billiontonsofcarbondioxideequivalent(tCO2e)in2021:OurWorldinData.
Total
greenhousegasemissions
(accessedAugust2023).
EmergingHydrogenEnergyTechnologyandGlobalMomentum3
Figure1:HydrogenValueChain
DRI–directreducedironproduction,H2–hydrogen,Mt–milliontons,Mtoe–milliontonsofoilequivalent.Source:InternationalEnergyAgency,2019.
GreenhydrogenwillbeanessentialpartoftheenergymixifADBDMCsaretoreachtheirclimategoalsandtransitiontoanet-zeroeconomy.
Figure
2illustratesglobalCO2emissionsbysector,withelectricpowergenerationaccountingfor38%ofemissionswithothersectorsaccountingfor62%(InternationalRenewableEnergyAgency2018).Freighttransport,alongwithironandsteel,cement,chemical,andaluminumproduction,accountfor27%ofemissions:addressingthesehard-to-decarbonizesectorsisrequiredtoreachthe1.5targetoftheParisclimateaccords(IPCC2018,UNEP2019).
Figure2:GlobalCarbonDioxideEmissionsbyEnergySector
Source:InternationalRenewableEnergyAgency,2018.
Althoughgreenhydrogencurrentlymakesupaverysmallshareofthehydrogenmarket(lessthan1%),theamountofelectrolyzercapacityforgreenhydrogenproductionhassignificantlyincreasedinrecentyears(
Figure
3).Thecost-competitivenessofgreenhydrogenproductionwillimproveaselectrolyzerefficiencyincreasesandelectrolyzercostsdecline.
4ADBSustainableDevelopmentWorkingPaperSeriesNo.96
ElectrolyzerCapacity(GW)
5,500
4,500
3,500
2,500
1,500
500
-500
Figure3:ElectrolyzerInstalledCapacity,2020–2050
2020202520302035204020452050
Year
BasecaseAggressivedevelopment
GW=gigawatt.
Source:WorldResourcesInstitute,2023.DerivedfromInternationalEnergyAgencyGlobalHydrogenReview2022,andDNVHydrogenForecastto2050,2022.
Asshownin
Figure
4thehydrogensupplychainsinclude:
(i)Accesstorawmaterialsforproduction(feedstock,electricity,etc.).
(ii)Productiontechnologies:steam-methanereforming(SMR,electrolyzers,etc.).
(iii)Storage:Hydrogencanbestoredphysicallyaseitheragasoraliquid.Storageofhydrogenasagastypicallyrequireshigh-pressuretanks(350–700bar[5,000–10,000poundspersquareinch(psi)]tankpressure)(USDepartmentofEnergy2019).Transportanddistribution:pipelines,tubetrailer,tankers,etc.
(iv)End-useapplications:transport,stationaryconsumption.
(v)Supportservices,whichareusuallynotrecognizedaspartofthehydrogensupplychainbutarecriticaltotheoperationofhydrogenprojects(e.g.,health,safety,andenvironment;qualityassurance,training,etc.).
EmergingHydrogenEnergyTechnologyandGlobalMomentum5
Figure4:HydrogenSupplyChain
CC=carboncapture,FC=fuelcell.
Source:InternationalRenewableEnergyAgency,2018.
A.AdvantagesofGreenHydrogen
GreenhydrogenappearstobeamultipurposeandadaptableapproachtoreduceCO2emissionsatscalebutfacestechnical,safety,financial,andeconomicchallenges.Greenhydrogensolutions,whendevelopedanddeployedwidely,canprovidenumerousbenefitsasfollows:
(i)Acceleratingtheintegrationandpenetrationofcleanenergysolutions,includingsolar,wind,miniandlargehydro,marineenergy,etc.
(ii)Improvingthetechno-commercialviabilityofdemand-sidemanagementwithbetter,moreresilient,reliable,andversatileenergystorage.
(iii)Deliveringabetteroperationandmanagementsolutiontopeakloadsandreducegridinstabilityandcongestion.
(iv)Increasingthenumberofenduserapplicationsindifferentsectors(transport,heat,etc.).
(v)Expandingnewvariableintermittentrenewablegenerationwithgreenhydrogenforelectricalgridnetworkbalancingandlong-termbulkstorage.
(vi)Providingadecentralizedsolutionandreducingrisksassociatedwithelectricityinfrastructureleadingtobulkcurtailmentofrenewableenergygeneration.
(vii)Creatingnewemploymentingreenhydrogen,automotive,fuelcell,safety,andotherbusinesses.
(viii)Increasingenergysecurity,reducingdependenceonfossilfuels,andprovidingoptimumuseofnationalresources.
(ix)Formingnewregionalmarketssellingandbuyinggreenhydrogenenergy.
6ADBSustainableDevelopmentWorkingPaperSeriesN
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度公路工程勞務(wù)承包合同樣本(含隧道工程)8篇
- 2024權(quán)威借款協(xié)議范本:法官認(rèn)可的標(biāo)準(zhǔn)格式版B版
- 2024房產(chǎn)買賣授權(quán)合同
- 2024年度執(zhí)業(yè)醫(yī)師與醫(yī)療咨詢機(jī)構(gòu)的聘用合同3篇
- 2024年設(shè)計師創(chuàng)意服務(wù)合同
- 2025版模具行業(yè)模具設(shè)計與制造質(zhì)量保證合同3篇
- 2024年知識產(chǎn)權(quán)使用權(quán)界定協(xié)議版B版
- 水電接頭冷擠壓課程設(shè)計
- 2025年中國維生素保健品行業(yè)發(fā)展?jié)摿Ψ治黾巴顿Y戰(zhàn)略咨詢報告
- 網(wǎng)絡(luò)課程設(shè)計原則
- 沛縣生活垃圾焚燒發(fā)電項目二期工程 環(huán)境影響報告書 報批稿
- DB44∕T 2149-2018 森林資源規(guī)劃設(shè)計調(diào)查技術(shù)規(guī)程
- 商業(yè)定價表(含各商鋪價格測算銷售回款)
- 【化學(xué)】重慶市2021-2022學(xué)年高一上學(xué)期期末聯(lián)合檢測試題
- 化學(xué)工業(yè)有毒有害作業(yè)工種范圍表
- 統(tǒng)編版小學(xué)四年級語文上冊五六單元測試卷(附答案)
- 商票保貼協(xié)議
- 高支模技術(shù)交底(新版)
- TOP-DOWN培訓(xùn)
- 電動力學(xué)答案完整
- 弱電工程保修書(共4頁)
評論
0/150
提交評論