金平區(qū)重點達標名校2023-2024學(xué)年中考四模數(shù)學(xué)試題含解析_第1頁
金平區(qū)重點達標名校2023-2024學(xué)年中考四模數(shù)學(xué)試題含解析_第2頁
金平區(qū)重點達標名校2023-2024學(xué)年中考四模數(shù)學(xué)試題含解析_第3頁
金平區(qū)重點達標名校2023-2024學(xué)年中考四模數(shù)學(xué)試題含解析_第4頁
金平區(qū)重點達標名校2023-2024學(xué)年中考四模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

金平區(qū)重點達標名校2023-2024學(xué)年中考四模數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.實數(shù)a在數(shù)軸上對應(yīng)點的位置如圖所示,把a,﹣a,a2按照從小到大的順序排列,正確的是()A.﹣a<a<a2 B.a(chǎn)<﹣a<a2 C.﹣a<a2<a D.a(chǎn)<a2<﹣a2.已知拋物線y=ax2+bx+c(a<0)與x軸交于點A(﹣1,0),與y軸的交點在(0,2),(0,3)之間(包含端點),頂點坐標為(1,n),則下列結(jié)論:①4a+2b<0;②﹣1≤a≤;③對于任意實數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2+bx+c=n﹣1有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個3.如圖,長度為10m的木條,從兩邊各截取長度為xm的木條,若得到的三根木條能組成三角形,則x可以取的值為()A.2m B.m C.3m D.6m4.平面直角坐標系中,若點A(a,﹣b)在第三象限內(nèi),則點B(b,a)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.3月22日,美國宣布將對約600億美元進口自中國的商品加征關(guān)稅,中國商務(wù)部隨即公布擬對約30億美元自美進口商品加征關(guān)稅,并表示,中國不希望打貿(mào)易戰(zhàn),但絕不懼怕貿(mào)易戰(zhàn),有信心,有能力應(yīng)對任何挑戰(zhàn).將數(shù)據(jù)30億用科學(xué)記數(shù)法表示為()A.3×109 B.3×108 C.30×108 D.0.3×10106.如圖,一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,則函數(shù)y=ax2+(b-1)x+c的圖象可能是()A. B. C. D.7.如圖,點C、D是線段AB上的兩點,點D是線段AC的中點.若AB=10cm,BC=4cm,則線段DB的長等于()A.2cm B.3cm C.6cm D.7cm8.下列算式的運算結(jié)果正確的是()A.m3?m2=m6B.m5÷m3=m2(m≠0)C.(m﹣2)3=m﹣5D.m4﹣m2=m29.設(shè)x1,x2是方程x2-2x-1=0的兩個實數(shù)根,則的值是()A.-6 B.-5 C.-6或-5 D.6或510.一次函數(shù)滿足,且隨的增大而減小,則此函數(shù)的圖象不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題(本大題共6個小題,每小題3分,共18分)11.二次函數(shù)的圖象與x軸有____個交點

.12.分解因式:.13.如圖,扇形的半徑為,圓心角為120°,用這個扇形圍成一個圓錐的側(cè)面,所得的圓錐的高為______.14.如圖,在等腰△ABC中,AB=AC,BC邊上的高AD=6cm,腰AB上的高CE=8cm,則BC=_____cm15.如圖,在平面直角坐標系中,反比例函數(shù)y=(x>0)的圖象交矩形OABC的邊AB于點D,交BC于點E,且BE=2EC,若四邊形ODBE的面積為8,則k=_____.16.如圖,已知,D、E分別是邊AB、AC上的點,且設(shè),,那么______用向量、表示三、解答題(共8題,共72分)17.(8分)已知關(guān)于x的一元二次方程3x2﹣6x+1﹣k=0有實數(shù)根,k為負整數(shù).求k的值;如果這個方程有兩個整數(shù)根,求出它的根.18.(8分)已知拋物線y=﹣2x2+4x+c.(1)若拋物線與x軸有兩個交點,求c的取值范圍;(2)若拋物線經(jīng)過點(﹣1,0),求方程﹣2x2+4x+c=0的根.19.(8分)x取哪些整數(shù)值時,不等式5x+2>3(x-1)與x≤2-x都成立?20.(8分)如今很多初中生購買飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此數(shù)學(xué)興趣小組對本班同學(xué)一天飲用飲品的情況進行了調(diào)查,大致可分為四種:A:自帶白開水;B:瓶裝礦泉水;C:碳酸飲料;D:非碳酸飲料.根據(jù)統(tǒng)計結(jié)果繪制如下兩個統(tǒng)計圖(如圖),根據(jù)統(tǒng)計圖提供的信息,解答下列問題:請你補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中,求“碳酸飲料”所在的扇形的圓心角的度數(shù);為了養(yǎng)成良好的生活習(xí)慣,班主任決定在自帶白開水的5名同學(xué)(男生2人,女生3人)中隨機抽取2名同學(xué)擔(dān)任生活監(jiān)督員,請用列表法或樹狀圖法求出恰好抽到一男一女的概率.21.(8分)如圖,點D是AB上一點,E是AC的中點,連接DE并延長到F,使得DE=EF,連接CF.求證:FC∥AB.22.(10分)某學(xué)校計劃組織全校1441名師生到相關(guān)部門規(guī)劃的林區(qū)植樹,經(jīng)過研究,決定租用當(dāng)?shù)刈廛嚬疽还?2輛A,B兩種型號客車作為交通工具.下表是租車公司提供給學(xué)校有關(guān)兩種型號客車的載客量和租金信息:型號載客量租金單價A30人/輛380元/輛B20人/輛280元/輛注:載客量指的是每輛客車最多可載該校師生的人數(shù)設(shè)學(xué)校租用A型號客車x輛,租車總費用為y元.求y與x的函數(shù)解析式,請直接寫出x的取值范圍;若要使租車總費用不超過21940元,一共有幾種租車方案?哪種租車方案總費用最省?最省的總費用是多少?23.(12分)如圖,二次函數(shù)y=ax2+2x+c的圖象與x軸交于點A(﹣1,0)和點B,與y軸交于點C(0,3).(1)求該二次函數(shù)的表達式;(2)過點A的直線AD∥BC且交拋物線于另一點D,求直線AD的函數(shù)表達式;(3)在(2)的條件下,請解答下列問題:①在x軸上是否存在一點P,使得以B、C、P為頂點的三角形與△ABD相似?若存在,求出點P的坐標;若不存在,請說明理由;②動點M以每秒1個單位的速度沿線段AD從點A向點D運動,同時,動點N以每秒個單位的速度沿線段DB從點D向點B運動,問:在運動過程中,當(dāng)運動時間t為何值時,△DMN的面積最大,并求出這個最大值.24.如圖,已知拋物線過點A(4,0),B(﹣2,0),C(0,﹣4).(1)求拋物線的解析式;(2)在圖甲中,點M是拋物線AC段上的一個動點,當(dāng)圖中陰影部分的面積最小值時,求點M的坐標;(3)在圖乙中,點C和點C1關(guān)于拋物線的對稱軸對稱,點P在拋物線上,且∠PAB=∠CAC1,求點P的橫坐標.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)實數(shù)a在數(shù)軸上的位置,判斷a,﹣a,a2在數(shù)軸上的相對位置,根據(jù)數(shù)軸上右邊的數(shù)大于左邊的數(shù)進行判斷.【詳解】由數(shù)軸上的位置可得,a<0,-a>0,0<a2<a,所以,a<a2<﹣a.故選D【點睛】本題考核知識點:考查了有理數(shù)的大小比較,解答本題的關(guān)鍵是根據(jù)數(shù)軸判斷出a,﹣a,a2的位置.2、C【解析】

①由拋物線的頂點橫坐標可得出b=-2a,進而可得出4a+2b=0,結(jié)論①錯誤;

②利用一次函數(shù)圖象上點的坐標特征結(jié)合b=-2a可得出a=-,再結(jié)合拋物線與y軸交點的位置即可得出-1≤a≤-,結(jié)論②正確;

③由拋物線的頂點坐標及a<0,可得出n=a+b+c,且n≥ax2+bx+c,進而可得出對于任意實數(shù)m,a+b≥am2+bm總成立,結(jié)論③正確;

④由拋物線的頂點坐標可得出拋物線y=ax2+bx+c與直線y=n只有一個交點,將直線下移可得出拋物線y=ax2+bx+c與直線y=n-1有兩個交點,進而可得出關(guān)于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根,結(jié)合④正確.【詳解】:①∵拋物線y=ax2+bx+c的頂點坐標為(1,n),

∴-=1,

∴b=-2a,

∴4a+2b=0,結(jié)論①錯誤;

②∵拋物線y=ax2+bx+c與x軸交于點A(-1,0),

∴a-b+c=3a+c=0,

∴a=-.

又∵拋物線y=ax2+bx+c與y軸的交點在(0,2),(0,3)之間(包含端點),

∴2≤c≤3,

∴-1≤a≤-,結(jié)論②正確;

③∵a<0,頂點坐標為(1,n),

∴n=a+b+c,且n≥ax2+bx+c,

∴對于任意實數(shù)m,a+b≥am2+bm總成立,結(jié)論③正確;

④∵拋物線y=ax2+bx+c的頂點坐標為(1,n),

∴拋物線y=ax2+bx+c與直線y=n只有一個交點,

又∵a<0,

∴拋物線開口向下,

∴拋物線y=ax2+bx+c與直線y=n-1有兩個交點,

∴關(guān)于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根,結(jié)合④正確.

故選C.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系、拋物線與x軸的交點以及二次函數(shù)的性質(zhì),觀察函數(shù)圖象,逐一分析四個結(jié)論的正誤是解題的關(guān)鍵.3、C【解析】

依據(jù)題意,三根木條的長度分別為xm,xm,(10-2x)m,在根據(jù)三角形的三邊關(guān)系即可判斷.【詳解】解:由題意可知,三根木條的長度分別為xm,xm,(10-2x)m,∵三根木條要組成三角形,∴x-x<10-2x<x+x,解得:.故選擇C.【點睛】本題主要考察了三角形三邊的關(guān)系,關(guān)鍵是掌握三角形兩邊之和大于第三邊,兩邊之差的絕對值小于第三邊.4、D【解析】分析:根據(jù)題意得出a和b的正負性,從而得出點B所在的象限.詳解:∵點A在第三象限,∴a<0,-b<0,即a<0,b>0,∴點B在第四象限,故選D.點睛:本題主要考查的是象限中點的坐標特點,屬于基礎(chǔ)題型.明確各象限中點的橫縱坐標的正負性是解題的關(guān)鍵.5、A【解析】

科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù)確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同當(dāng)原數(shù)絕對值時,n是正數(shù);當(dāng)原數(shù)的絕對值時,n是負數(shù).【詳解】將數(shù)據(jù)30億用科學(xué)記數(shù)法表示為,故選A.【點睛】此題考查科學(xué)記數(shù)法的表示方法科學(xué)記數(shù)法的表示形式為的形式,其中,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.6、A【解析】

由一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,得出方程ax2+(b-1)x+c=0有兩個不相等的根,進而得出函數(shù)y=ax2+(b-1)x+c與x軸有兩個交點,根據(jù)方程根與系數(shù)的關(guān)系得出函數(shù)y=ax2+(b-1)x+c的對稱軸x=->0,即可進行判斷.【詳解】點P在拋物線上,設(shè)點P(x,ax2+bx+c),又因點P在直線y=x上,∴x=ax2+bx+c,∴ax2+(b-1)x+c=0;由圖象可知一次函數(shù)y=x與二次函數(shù)y=ax2+bx+c交于第一象限的P、Q兩點,∴方程ax2+(b-1)x+c=0有兩個正實數(shù)根.∴函數(shù)y=ax2+(b-1)x+c與x軸有兩個交點,又∵->0,a>0∴-=-+>0∴函數(shù)y=ax2+(b-1)x+c的對稱軸x=->0,∴A符合條件,故選A.7、D【解析】【分析】先求AC,再根據(jù)點D是線段AC的中點,求出CD,再求BD.【詳解】因為,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因為,點D是線段AC的中點,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故選D【點睛】本題考核知識點:線段的中點,和差.解題關(guān)鍵點:利用線段的中點求出線段長度.8、B【解析】

直接利用同底數(shù)冪的除法運算法則以及合并同類項法則、積的乘方運算法則分別化簡得出答案.【詳解】A、m3?m2=m5,故此選項錯誤;B、m5÷m3=m2(m≠0),故此選項正確;C、(m-2)3=m-6,故此選項錯誤;D、m4-m2,無法計算,故此選項錯誤;故選:B.【點睛】此題主要考查了同底數(shù)冪的除法運算以及合并同類項法則、積的乘方運算,正確掌握運算法則是解題關(guān)鍵.9、A【解析】試題解析:∵x1,x2是方程x2-2x-1=0的兩個實數(shù)根,∴x1+x2=2,x1?x2=-1∴=.故選A.10、A【解析】試題分析:根據(jù)y隨x的增大而減小得:k<0,又kb>0,則b<0,故此函數(shù)的圖象經(jīng)過第二、三、四象限,即不經(jīng)過第一象限.故選A.考點:一次函數(shù)圖象與系數(shù)的關(guān)系.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】【分析】根據(jù)一元二次方程x2+mx+m-2=0的根的判別式的符號進行判定二次函數(shù)y=x2+mx+m-2的圖象與x軸交點的個數(shù).【詳解】二次函數(shù)y=x2+mx+m-2的圖象與x軸交點的縱坐標是零,即當(dāng)y=0時,x2+mx+m-2=0,∵△=m2-4(m-2)=(m-2)2+4>0,∴一元二次方程x2+mx+m-2=0有兩個不相等是實數(shù)根,即二次函數(shù)y=x2+mx+m-2的圖象與x軸有2個交點,故答案為:2.【點睛】本題考查了拋物線與x軸的交點.二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)的交點與一元二次方程ax2+bx+c=0根之間的關(guān)系.△=b2-4ac決定拋物線與x軸的交點個數(shù).△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.12、.【解析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應(yīng)用平方差公式分解即可:.考點:提公因式法和應(yīng)用公式法因式分解.13、4cm【解析】

求出扇形的弧長,除以2π即為圓錐的底面半徑,然后利用勾股定理求得圓錐的高即可.【詳解】扇形的弧長==4π,

圓錐的底面半徑為4π÷2π=2,

故圓錐的高為:=4,

故答案為4cm.【點睛】本題考查了圓錐的計算,重點考查了扇形的弧長公式;圓的周長公式;用到的知識點為:圓錐的弧長等于底面周長.14、【解析】

根據(jù)三角形的面積公式求出=,根據(jù)等腰三角形的性質(zhì)得到BD=DC=BC,根據(jù)勾股定理列式計算即可.【詳解】∵AD是BC邊上的高,CE是AB邊上的高,∴AB?CE=BC?AD,∵AD=6,CE=8,∴=,∴=,∵AB=AC,AD⊥BC,∴BD=DC=BC,∵AB2?BD2=AD2,∴AB2=BC2+36,即BC2=BC2+36,解得:BC=.故答案為:.【點睛】本題考查的是等腰三角形的性質(zhì)、勾股定理的應(yīng)用和三角形面積公式的應(yīng)用,根據(jù)三角形的面積公式求出腰與底的比是解題的關(guān)15、1【解析】

連接OB,由矩形的性質(zhì)和已知條件得出△OBD的面積=△OBE的面積=四邊形ODBE的面積,再求出△OCE的面積為2,即可得出k的值.【詳解】連接OB,如圖所示:∵四邊形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面積=△OBC的面積,∵D、E在反比例函數(shù)y=(x>0)的圖象上,∴△OAD的面積=△OCE的面積,∴△OBD的面積=△OBE的面積=四邊形ODBE的面積=1,∵BE=2EC,∴△OCE的面積=△OBE的面積=2,∴k=1.故答案為:1.【點睛】本題考查了反比例函數(shù)的系數(shù)k的幾何意義:在反比例函數(shù)y=xk圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.在反比例函數(shù)的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構(gòu)成的三角形的面積是|k|,且保持不變.16、【解析】

在△ABC中,,∠A=∠A,所以△ABC△ADE,所以DE=BC,再由向量的運算可得出結(jié)果.【詳解】解:在△ABC中,,∠A=∠A,∴△ABC△ADE,∴DE=BC,∴=3=3∴=,故答案為.【點睛】本題考查了相似三角形的判定和性質(zhì)以及向量的運算.三、解答題(共8題,共72分)17、(2)k=﹣2,﹣2.(2)方程的根為x2=x2=2.【解析】

(2)根據(jù)方程有實數(shù)根,得到根的判別式的值大于等于0列出關(guān)于k的不等式,求出不等式的解集即可得到k的值;(2)將k的值代入原方程,求出方程的根,經(jīng)檢驗即可得到滿足題意的k的值.【詳解】解:(2)根據(jù)題意,得△=(﹣6)2﹣4×3(2﹣k)≥0,解得k≥﹣2.∵k為負整數(shù),∴k=﹣2,﹣2.(2)當(dāng)k=﹣2時,不符合題意,舍去;當(dāng)k=﹣2時,符合題意,此時方程的根為x2=x2=2.【點睛】本題考查了根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:(2)△>0時,方程有兩個不相等的實數(shù)根;(2)△=0時,方程有兩個相等的實數(shù)根;(3)△<0時,方程沒有實數(shù)根.也考查了一元二次方程的解法.18、(1)c>﹣2;(2)x1=﹣1,x2=1.【解析】

(1)根據(jù)拋物線與x軸有兩個交點,b2-4ac>0列不等式求解即可;

(2)先求出拋物線的對稱軸,再根據(jù)拋物線的對稱性求出拋物線與x軸的另一個交點坐標,然后根據(jù)二次函數(shù)與一元二次方程的關(guān)系解答.【詳解】(1)解:∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,即16+8c>0,解得c>﹣2;(2)解:由y=﹣2x2+4x+c得拋物線的對稱軸為直線x=1,∵拋物線經(jīng)過點(﹣1,0),∴拋物線與x軸的另一個交點為(1,0),∴方程﹣2x2+4x+c=0的根為x1=﹣1,x2=1.【點睛】考查了拋物線與x軸的交點問題、二次函數(shù)與一元二次方程,解題關(guān)鍵是運用了根與系數(shù)的關(guān)系以及二次函數(shù)的對稱性.19、-2,-1,0,1【解析】

解不等式5x+2>3(x-1)得:得x>-2.5;解不等式x≤2-x得x≤1.則這兩個不等式解集的公共部分為,因為x取整數(shù),則x取-2,-1,0,1.故答案為-2,-1,0,1【點睛】本題考查了求不等式組的整數(shù)解,先求出每個不等式的解集,再求出它們的公共部分,最后確定公共的整數(shù)解(包括正整數(shù),0,負整數(shù)).20、(1)詳見解析;(2)72°;(3)3【解析】

(1)由B類型的人數(shù)及其百分比求得總?cè)藬?shù),在用總?cè)藬?shù)減去其余各組人數(shù)得出C類型人數(shù),即可補全條形圖;(2)用360°乘以C類別人數(shù)所占比例即可得;(3)用列表法或畫樹狀圖法列出所有等可能結(jié)果,從中確定恰好抽到一男一女的結(jié)果數(shù),根據(jù)概率公式求解可得.【詳解】解:(1)∵抽查的總?cè)藬?shù)為:20÷40%=50(人)∴C類人數(shù)為:50-5-20-15=10(人)補全條形統(tǒng)計圖如下:(2)“碳酸飲料”所在的扇形的圓心角度數(shù)為:10(3)設(shè)男生為A1、A2,女生為B1、B畫樹狀圖得:∴恰好抽到一男一女的情況共有12種,分別是A∴P(恰好抽到一男一女)=12【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用以及概率的求法,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?1、答案見解析【解析】

利用已知條件容易證明△ADE≌△CFE,得出角相等,然后利用平行線的判定可以證明FC∥AB.【詳解】解:∵E是AC的中點,∴AE=CE.在△ADE與△CFE中,∵AE=EC,∠AED=∠CEF,DE=EF,∴△ADE≌△CFE(SAS),∴∠EAD=∠ECF,∴FC∥AB.【點睛】本題主要考查了全等三角形的性質(zhì)與判定,平行線的判定定理.通過全等得角相等,然后得到兩線平行時一種常用的方法,應(yīng)注意掌握運用.22、(1)21≤x≤62且x為整數(shù);(2)共有25種租車方案,當(dāng)租用A型號客車21輛,B型號客車41輛時,租金最少,為19460元.【解析】

(1)根據(jù)租車總費用=A、B兩種車的費用之和,列出函數(shù)關(guān)系式,再根據(jù)AB兩種車至少要能坐1441人即可得取x的取值范圍;(2)由總費用不超過21940元可得關(guān)于x的不等式,解不等式后再利用函數(shù)的性質(zhì)即可解決問題.【詳解】(1)由題意得y=380x+280(62-x)=100x+17360,∵30x+20(62-x)≥1441,∴x≥20.1,∴21≤x≤62且x為整數(shù);(2)由題意得100x+17360≤21940,解得x≤45.8,∴21≤x≤45且x為整數(shù),∴共有25種租車方案,∵k=100>0,∴y隨x的增大而增大,當(dāng)x=21時,y有最小值,y最?。?00×21+17360=19460,故共有25種租車方案,當(dāng)租用A型號客車21輛,B型號客車41輛時,租金最少,為19460元.【點睛】本題考查了一次函數(shù)的應(yīng)用、一元一次不等式的應(yīng)用等,解題的關(guān)鍵是理解題意,正確列出函數(shù)關(guān)系式,會利用函數(shù)的性質(zhì)解決最值問題.23、(1)y=﹣x2+2x+3;(2)y=﹣x﹣1;(3)P()或P(﹣4.5,0);當(dāng)t=時,S△MDN的最大值為.【解析】

(1)把A(-1,0),C(0,3)代入y=ax2+2x+c即可得到結(jié)果;

(2)在y=-x2+2x+3中,令y=0,則-x2+2x+3=0,得到B(3,0),由已知條件得直線BC的解析式為y=-x+3,由于AD∥BC,設(shè)直線AD的解析式為y=-x+b,即可得到結(jié)論;

(3)①由BC∥AD,得到∠DAB=∠CBA,全等只要當(dāng)或時,△PBC∽△ABD,解方程組得D(4,?5),求得設(shè)P的坐標為(x,0),代入比例式解得或x=?4.5,即可得到或P(?4.5,0);

②過點B作BF⊥AD于F,過點N作NE⊥AD于E,在Rt△AFB中,∠BAF=45°,于是得到sin∠BAF求得求得由于于是得到即可得到結(jié)果.【詳解】(1)由題意知:解得∴二次函數(shù)的表達式為(2)在中,令y=0,則解得:∴B(3,0),由已知條件得直線BC的解析式為y=?x+3,∵AD∥BC,∴設(shè)直線AD的解析式為y=?x+b,∴0=1+b,∴b=?1,∴直線AD的解析式為y=?x?1;(3)①∵BC∥AD,∴∠DAB=∠CBA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論