版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省永春三中2023-2024學(xué)年高三下學(xué)期考前模擬(三)數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),則函數(shù)的零點(diǎn)所在區(qū)間為()A. B. C. D.2.如圖,四邊形為正方形,延長(zhǎng)至,使得,點(diǎn)在線段上運(yùn)動(dòng).設(shè),則的取值范圍是()A. B. C. D.3.已知菱形的邊長(zhǎng)為2,,則()A.4 B.6 C. D.4.已知平面向量滿足與的夾角為,且,則實(shí)數(shù)的值為()A. B. C. D.5.如圖,在正方體中,已知、、分別是線段上的點(diǎn),且.則下列直線與平面平行的是()A. B. C. D.6.已知為坐標(biāo)原點(diǎn),角的終邊經(jīng)過點(diǎn)且,則()A. B. C. D.7.如圖,在中,,是上一點(diǎn),若,則實(shí)數(shù)的值為()A. B. C. D.8.設(shè)全集集合,則()A. B. C. D.9.已知向量,則向量在向量方向上的投影為()A. B. C. D.10.已知雙曲線的漸近線方程為,且其右焦點(diǎn)為,則雙曲線的方程為()A. B. C. D.11.如圖,平面ABCD,ABCD為正方形,且,E,F(xiàn)分別是線段PA,CD的中點(diǎn),則異面直線EF與BD所成角的余弦值為()A. B. C. D.12.如圖是計(jì)算值的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是()A.B.C.D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)是公差不為0的等差數(shù)列的前項(xiàng)和,且,則______.14.已知等比數(shù)列滿足公比,為其前項(xiàng)和,,,構(gòu)成等差數(shù)列,則_______.15.命題“”的否定是______.16.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的體積為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù)()的最小值為.(1)求的值;(2)若,,為正實(shí)數(shù),且,證明:.18.(12分)已知函數(shù),.(1)若,,求實(shí)數(shù)的值.(2)若,,求正實(shí)數(shù)的取值范圍.19.(12分)如圖所示,在三棱錐中,,,,點(diǎn)為中點(diǎn).(1)求證:平面平面;(2)若點(diǎn)為中點(diǎn),求平面與平面所成銳二面角的余弦值.20.(12分)已知函數(shù)(1)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;(2)若函數(shù)對(duì)恒成立,求實(shí)數(shù)的取值范圍.21.(12分)已知函數(shù)(1)求函數(shù)在處的切線方程(2)設(shè)函數(shù),對(duì)于任意,恒成立,求的取值范圍.22.(10分)已知函數(shù).(Ⅰ)當(dāng)時(shí),求不等式的解集;(Ⅱ)若存在滿足不等式,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
首先求得時(shí),的取值范圍.然后求得時(shí),的單調(diào)性和零點(diǎn),令,根據(jù)“時(shí),的取值范圍”得到,利用零點(diǎn)存在性定理,求得函數(shù)的零點(diǎn)所在區(qū)間.【詳解】當(dāng)時(shí),.當(dāng)時(shí),為增函數(shù),且,則是唯一零點(diǎn).由于“當(dāng)時(shí),.”,所以令,得,因?yàn)?,,所以函?shù)的零點(diǎn)所在區(qū)間為.故選:A【點(diǎn)睛】本小題主要考查分段函數(shù)的性質(zhì),考查符合函數(shù)零點(diǎn),考查零點(diǎn)存在性定理,考查函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.2、C【解析】
以為坐標(biāo)原點(diǎn),以分別為x軸,y軸建立直角坐標(biāo)系,利用向量的坐標(biāo)運(yùn)算計(jì)算即可解決.【詳解】以為坐標(biāo)原點(diǎn)建立如圖所示的直角坐標(biāo)系,不妨設(shè)正方形的邊長(zhǎng)為1,則,,設(shè),則,所以,且,故.故選:C.【點(diǎn)睛】本題考查利用向量的坐標(biāo)運(yùn)算求變量的取值范圍,考查學(xué)生的基本計(jì)算能力,本題的關(guān)鍵是建立適當(dāng)?shù)闹苯亲鴺?biāo)系,是一道基礎(chǔ)題.3、B【解析】
根據(jù)菱形中的邊角關(guān)系,利用余弦定理和數(shù)量積公式,即可求出結(jié)果.【詳解】如圖所示,菱形形的邊長(zhǎng)為2,,∴,∴,∴,且,∴,故選B.【點(diǎn)睛】本題主要考查了平面向量的數(shù)量積和余弦定理的應(yīng)用問題,屬于基礎(chǔ)題..4、D【解析】
由已知可得,結(jié)合向量數(shù)量積的運(yùn)算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算,向量垂直的應(yīng)用,考查計(jì)算求解能力,屬于基礎(chǔ)題.5、B【解析】
連接,使交于點(diǎn),連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點(diǎn),連接、,則為的中點(diǎn),在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點(diǎn),且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點(diǎn)睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.6、C【解析】
根據(jù)三角函數(shù)的定義,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出結(jié)果.【詳解】根據(jù)題意,,解得,所以,所以,所以.故選:C.【點(diǎn)睛】本題考查三角函數(shù)定義的應(yīng)用和二倍角的正弦公式,考查計(jì)算能力.7、C【解析】
由題意,可根據(jù)向量運(yùn)算法則得到(1﹣m),從而由向量分解的唯一性得出關(guān)于t的方程,求出t的值.【詳解】由題意及圖,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故選C.【點(diǎn)睛】本題考查平面向量基本定理,根據(jù)分解的唯一性得到所求參數(shù)的方程是解答本題的關(guān)鍵,本題屬于基礎(chǔ)題.8、A【解析】
先求出,再與集合N求交集.【詳解】由已知,,又,所以.故選:A.【點(diǎn)睛】本題考查集合的基本運(yùn)算,涉及到補(bǔ)集、交集運(yùn)算,是一道容易題.9、A【解析】
投影即為,利用數(shù)量積運(yùn)算即可得到結(jié)論.【詳解】設(shè)向量與向量的夾角為,由題意,得,,所以,向量在向量方向上的投影為.故選:A.【點(diǎn)睛】本題主要考察了向量的數(shù)量積運(yùn)算,難度不大,屬于基礎(chǔ)題.10、B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點(diǎn):雙曲線方程.11、C【解析】
分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標(biāo)系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標(biāo)系.設(shè).則.故異面直線EF與BD所成角的余弦值為.故選:C【點(diǎn)睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.12、B【解析】
根據(jù)計(jì)算結(jié)果,可知該循環(huán)結(jié)構(gòu)循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進(jìn)而可得判斷框內(nèi)的不等式.【詳解】因?yàn)樵摮绦驁D是計(jì)算值的一個(gè)程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內(nèi)的不等式應(yīng)為或所以選C【點(diǎn)睛】本題考查了程序框圖的簡(jiǎn)單應(yīng)用,根據(jù)結(jié)果填寫判斷框,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、18【解析】
先由,可得,再結(jié)合等差數(shù)列的前項(xiàng)和公式求解即可.【詳解】解:因?yàn)椋裕?故答案為:18.【點(diǎn)睛】本題考查了等差數(shù)列基本量的運(yùn)算,重點(diǎn)考查了等差數(shù)列的前項(xiàng)和公式,屬基礎(chǔ)題.14、0【解析】
利用等差中項(xiàng)以及等比數(shù)列的前項(xiàng)和公式即可求解.【詳解】由,,是等差數(shù)列可知因?yàn)?,所以,故答案為?【點(diǎn)睛】本題考查了等差中項(xiàng)的應(yīng)用、等比數(shù)列的前項(xiàng)和公式,需熟記公式,屬于基礎(chǔ)題.15、,【解析】
根據(jù)特稱命題的否定為全稱命題得到結(jié)果即可.【詳解】解:因?yàn)樘胤Q命題的否定是全稱命題,所以,命題,則該命題的否定是:,故答案為:,.【點(diǎn)睛】本題考查全稱命題與特稱命題的否定關(guān)系,屬于基礎(chǔ)題.16、【解析】
根據(jù)三視圖知該幾何體是三棱柱與半圓錐的組合體,結(jié)合圖中數(shù)據(jù)求出它的體積.【詳解】根據(jù)三視圖知,該幾何體是三棱柱與半圓錐的組合體,如圖所示:結(jié)合圖中數(shù)據(jù),計(jì)算它的體積為.故答案為:.【點(diǎn)睛】本題考查了根據(jù)三視圖求簡(jiǎn)單組合體的體積應(yīng)用問題,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)分類討論,去絕對(duì)值求出函數(shù)的解析式,根據(jù)一次函數(shù)的性質(zhì),得出的單調(diào)性,得出取最小值,即可求的值;(2)由(1)得出,利用“乘1法”,令,化簡(jiǎn)后利用基本不等式求出的最小值,即可證出.【詳解】(1)解:當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.所以當(dāng)時(shí),取最小值.(2)證明:由(1)可知.要證明:,即證,因?yàn)椋?,為正?shí)數(shù),所以.當(dāng)且僅當(dāng),即,,時(shí)取等號(hào),所以.【點(diǎn)睛】本題考查絕對(duì)值不等式和基本不等式的應(yīng)用,還運(yùn)用“乘1法”和分類討論思想,屬于中檔題.18、(1)1(2)【解析】
(1)求得和,由,,得,令,令導(dǎo)數(shù)求得函數(shù)的單調(diào)性,利用,即可求解.(2)解法一:令,利用導(dǎo)數(shù)求得的單調(diào)性,轉(zhuǎn)化為,令(),利用導(dǎo)數(shù)得到的單調(diào)性,分類討論,即可求解.解法二:可利用導(dǎo)數(shù),先證明不等式,,,,令(),利用導(dǎo)數(shù),分類討論得出函數(shù)的單調(diào)性與最值,即可求解.【詳解】(1)由題意,得,,由,…①,得,令,則,因?yàn)?,所以在單調(diào)遞增,又,所以當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故方程①有且僅有唯一解,實(shí)數(shù)的值為1.(2)解法一:令(),則,所以當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;故.令(),則.(i)若時(shí),,在單調(diào)遞增,所以,滿足題意.(ii)若時(shí),,滿足題意.(iii)若時(shí),,在單調(diào)遞減,所以.不滿足題意.綜上述:.解法二:先證明不等式,,,…(*).令,則當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,所以,即.變形得,,所以時(shí),,所以當(dāng)時(shí),.又由上式得,當(dāng)時(shí),,,.因此不等式(*)均成立.令(),則,(i)若時(shí),當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;故.(ii)若時(shí),,在單調(diào)遞增,所以.因此,①當(dāng)時(shí),此時(shí),,,則需由(*)知,,(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),所以.②當(dāng)時(shí),此時(shí),,則當(dāng)時(shí),(由(*)知);當(dāng)時(shí),(由(*)知).故對(duì)于任意,.綜上述:.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計(jì)算能力,對(duì)于恒成立問題,通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.19、(1)答案見解析.(2)【解析】
(1)通過證明平面,證得,證得,由此證得平面,進(jìn)而證得平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出平面與平面所成銳二面角的余弦值.【詳解】(1)因?yàn)椋云矫?,因?yàn)槠矫妫裕驗(yàn)?,點(diǎn)為中點(diǎn),所以.因?yàn)?,所以平面.因?yàn)槠矫?,所以平面平面.?)以點(diǎn)為坐標(biāo)原點(diǎn),直線分別為軸,軸,過點(diǎn)與平面垂直的直線為軸,建立空間直角坐標(biāo)系,則,,,,,,,,,,設(shè)平面的一個(gè)法向量,則即取,則,,所以,設(shè)平面的一個(gè)法向量,則即取,則,,所以,設(shè)平面與平面所成銳二面角為,則.所以平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.20、(1);(2).【解析】
(1)求導(dǎo)得到,討論和兩種情況,計(jì)算函數(shù)的單調(diào)性,得到,再討論,,三種情況,計(jì)算得到答案.(2)計(jì)算得到,討論,兩種情況,分別計(jì)算單調(diào)性得到函數(shù)最值,得到答案.【詳解】(1),①當(dāng)時(shí)恒成立,所以單調(diào)遞增,因?yàn)椋杂形ㄒ涣泓c(diǎn),即符合題意;②當(dāng)時(shí),令,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,函數(shù)。(i)當(dāng)即,所以符合題意,(ii)當(dāng)即時(shí),因?yàn)?,故存?所以不符題意(iii)當(dāng)時(shí),因?yàn)?,設(shè),所以,單調(diào)遞增,即,故存在,使得,不符題意;綜上,的取值范圍為。(2)。①當(dāng)時(shí),恒成立,所以單調(diào)遞增,所以,即符合題意;②當(dāng)時(shí),恒成立,所以單調(diào)遞增,又因?yàn)?,所以存在,使得,且?dāng)時(shí),。即在上單調(diào)遞減,所以,不符題意。綜上,的取值范圍為.【點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)問題,恒成立問題,意在考查學(xué)生的分類討論能力和綜合應(yīng)用能力.21、(1);(2)【解析】
(1)求出,即可求出切線的點(diǎn)斜式方程,整理即可;(2)的取值范圍滿足,,求出,當(dāng)時(shí)求出,的解,得到單調(diào)區(qū)間,極小值最小值即可.【詳解】(1)由于,此時(shí)切點(diǎn)坐標(biāo)為所以切線方程為.(2)由已知,故.由于,故,設(shè)由于在單調(diào)遞增同時(shí)時(shí),,時(shí),,故存在使得且當(dāng)時(shí),當(dāng)時(shí),所以當(dāng)時(shí),當(dāng)時(shí),所以當(dāng)時(shí),取得極小值,也是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 公務(wù)員工作總結(jié)態(tài)度端正與廉潔奉公
- 美甲店服務(wù)員工作感悟
- 有害廢棄物安全回收流程
- 2025年中考化學(xué)一輪復(fù)習(xí)之化學(xué)式的書寫與意義
- 酒店管理工作關(guān)鍵職責(zé)講解
- 稅務(wù)報(bào)告與申報(bào)流程
- 銀行員工感悟
- 整形行業(yè)采購工作總結(jié)
- 2024年設(shè)備監(jiān)理師考試題庫【原創(chuàng)題】
- 別墅度假休閑旅游合同
- 醫(yī)保繳費(fèi)問題排查整改報(bào)告
- 2024年黑龍江高中學(xué)業(yè)水平合格性考試數(shù)學(xué)試卷試題(含答案詳解)
- 2024年度醫(yī)院財(cái)務(wù)部述職報(bào)告課件
- 浙江省杭州市余杭區(qū)2023-2024學(xué)年五年級(jí)上學(xué)期1月期末道德與法治試題
- 工程管理培訓(xùn)教案
- agv無人運(yùn)輸車維修保養(yǎng)合同
- 2023-2024學(xué)年二年級(jí)數(shù)學(xué)上冊(cè)期末樂考非紙筆測(cè)試題(一)蘇教版
- 學(xué)生信息技術(shù)應(yīng)用實(shí)踐
- Android移動(dòng)應(yīng)用開發(fā)基礎(chǔ)教程-教案
- 2024年江蘇省學(xué)業(yè)水平合格性考試語文全真模擬卷
- 2023年總裝電氣工程師年度總結(jié)及下一年計(jì)劃
評(píng)論
0/150
提交評(píng)論