版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
廣東佛山市禪城區(qū)2023-2024學年高三第二次聯(lián)考(二模)數(shù)學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的最大值為,最小正周期為,則有序數(shù)對為()A. B. C. D.2.若的二項式展開式中二項式系數(shù)的和為32,則正整數(shù)的值為()A.7 B.6 C.5 D.43.將3個黑球3個白球和1個紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種4.若非零實數(shù)、滿足,則下列式子一定正確的是()A. B.C. D.5.若直線的傾斜角為,則的值為()A. B. C. D.6.若函數(shù)(其中,圖象的一個對稱中心為,,其相鄰一條對稱軸方程為,該對稱軸處所對應的函數(shù)值為,為了得到的圖象,則只要將的圖象()A.向右平移個單位長度 B.向左平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度7.設函數(shù),的定義域都為,且是奇函數(shù),是偶函數(shù),則下列結論正確的是()A.是偶函數(shù) B.是奇函數(shù)C.是奇函數(shù) D.是奇函數(shù)8.已知雙曲線的一條漸近線傾斜角為,則()A.3 B. C. D.9.已知曲線且過定點,若且,則的最小值為().A. B.9 C.5 D.10.函數(shù)的對稱軸不可能為()A. B. C. D.11.函數(shù)的圖象可能是()A. B. C. D.12.某校8位學生的本次月考成績恰好都比上一次的月考成績高出50分,則以該8位學生這兩次的月考成績各自組成樣本,則這兩個樣本不變的數(shù)字特征是()A.方差 B.中位數(shù) C.眾數(shù) D.平均數(shù)二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,若向量與共線,則________.14.在直角三角形中,為直角,,點在線段上,且,若,則的正切值為_____.15.一個村子里一共有個人,其中一個人是謠言制造者,他編造了一條謠言并告訴了另一個人,這個人又把謠言告訴了第三個人,如此等等.在每一次謠言傳播時,謠言的接受者都是在其余個村民中隨機挑選的,當謠言傳播次之后,還沒有回到最初的造謠者的概率是_______.16.已知直線被圓截得的弦長為2,則的值為__三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點分別為、,點在橢圓上,且.(Ⅰ)求橢圓的標準方程;(Ⅱ)設直線與橢圓相交于、兩點,與圓相交于、兩點,求的取值范圍.18.(12分)已知,,函數(shù)的最小值為.(1)求證:;(2)若恒成立,求實數(shù)的最大值.19.(12分)如圖,己知圓和雙曲線,記與軸正半軸、軸負半軸的公共點分別為、,又記與在第一、第四象限的公共點分別為、.(1)若,且恰為的左焦點,求的兩條漸近線的方程;(2)若,且,求實數(shù)的值;(3)若恰為的左焦點,求證:在軸上不存在這樣的點,使得.20.(12分)在中,內(nèi)角的對邊分別是,已知.(1)求角的值;(2)若,,求的面積.21.(12分)設等差數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)求的前項和及使得最小的的值.22.(10分)如圖,在三棱錐中,,,,平面平面,、分別為、中點.(1)求證:;(2)求二面角的大?。?/p>
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】函數(shù)(為輔助角)∴函數(shù)的最大值為,最小正周期為故選B2、C【解析】
由二項式系數(shù)性質,的展開式中所有二項式系數(shù)和為計算.【詳解】的二項展開式中二項式系數(shù)和為,.故選:C.【點睛】本題考查二項式系數(shù)的性質,掌握二項式系數(shù)性質是解題關鍵.3、D【解析】
采取分類計數(shù)和分步計數(shù)相結合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個相同顏色的排在一起【詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時將紅球插入6個球組成的7個空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時紅球只能插入兩個相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【點睛】本題考查排列組合公式的具體應用,插空法的應用,屬于基礎題4、C【解析】
令,則,,將指數(shù)式化成對數(shù)式得、后,然后取絕對值作差比較可得.【詳解】令,則,,,,,因此,.故選:C.【點睛】本題考查了利用作差法比較大小,同時也考查了指數(shù)式與對數(shù)式的轉化,考查推理能力,屬于中等題.5、B【解析】
根據(jù)題意可得:,所求式子利用二倍角的正弦函數(shù)公式化簡,再利用同角三角函數(shù)間的基本關系弦化切后,將代入計算即可求出值.【詳解】由于直線的傾斜角為,所以,則故答案選B【點睛】本題考查二倍角的正弦函數(shù)公式,同角三角函數(shù)間的基本關系,以及直線傾斜角與斜率之間的關系,熟練掌握公式是解本題的關鍵.6、B【解析】
由函數(shù)的圖象的頂點坐標求出A,由周期求出,由五點法作圖求出的值,可得的解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,誘導公式,得出結論.【詳解】根據(jù)已知函數(shù)其中,的圖象過點,,可得,,解得:.再根據(jù)五點法作圖可得,可得:,可得函數(shù)解析式為:故把的圖象向左平移個單位長度,可得的圖象,故選B.【點睛】本題主要考查由函數(shù)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標求出A,由周期求出,由五點法作圖求出的值,函數(shù)的圖象變換規(guī)律,誘導公式的應用,屬于中檔題.7、C【解析】
根據(jù)函數(shù)奇偶性的性質即可得到結論.【詳解】解:是奇函數(shù),是偶函數(shù),,,,故函數(shù)是奇函數(shù),故錯誤,為偶函數(shù),故錯誤,是奇函數(shù),故正確.為偶函數(shù),故錯誤,故選:.【點睛】本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關鍵.8、D【解析】
由雙曲線方程可得漸近線方程,根據(jù)傾斜角可得漸近線斜率,由此構造方程求得結果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,,解得:.故選:.【點睛】本題考查根據(jù)雙曲線漸近線傾斜角求解參數(shù)值的問題,關鍵是明確直線傾斜角與斜率的關系;易錯點是忽略方程表示雙曲線對于的范圍的要求.9、A【解析】
根據(jù)指數(shù)型函數(shù)所過的定點,確定,再根據(jù)條件,利用基本不等式求的最小值.【詳解】定點為,,當且僅當時等號成立,即時取得最小值.故選:A【點睛】本題考查指數(shù)型函數(shù)的性質,以及基本不等式求最值,意在考查轉化與變形,基本計算能力,屬于基礎題型.10、D【解析】
由條件利用余弦函數(shù)的圖象的對稱性,得出結論.【詳解】對于函數(shù),令,解得,當時,函數(shù)的對稱軸為,,.故選:D.【點睛】本題主要考查余弦函數(shù)的圖象的對稱性,屬于基礎題.11、A【解析】
先判斷函數(shù)的奇偶性,以及該函數(shù)在區(qū)間上的函數(shù)值符號,結合排除法可得出正確選項.【詳解】函數(shù)的定義域為,,該函數(shù)為偶函數(shù),排除B、D選項;當時,,排除C選項.故選:A.【點睛】本題考查根據(jù)函數(shù)的解析式辨別函數(shù)的圖象,一般分析函數(shù)的定義域、奇偶性、單調(diào)性、零點以及函數(shù)值符號,結合排除法得出結果,考查分析問題和解決問題的能力,屬于中等題.12、A【解析】
通過方差公式分析可知方差沒有改變,中位數(shù)、眾數(shù)和平均數(shù)都發(fā)生了改變.【詳解】由題可知,中位數(shù)和眾數(shù)、平均數(shù)都有變化.本次和上次的月考成績相比,成績和平均數(shù)都增加了50,所以沒有改變,根據(jù)方差公式可知方差不變.故選:A【點睛】本題主要考查樣本的數(shù)字特征,意在考查學生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
計算得到,根據(jù)向量平行計算得到答案.【詳解】由題意可得,因為與共線,所以有,即,解得.故答案為:.【點睛】本題考查了根據(jù)向量平行求參數(shù),意在考查學生的計算能力.14、3【解析】
在直角三角形中設,,,利用兩角差的正切公式求解.【詳解】設,,則,故.故答案為:3【點睛】此題考查在直角三角形中求角的正切值,關鍵在于合理構造角的和差關系,其本質是利用兩角差的正切公式求解.15、【解析】
利用相互獨立事件概率的乘法公式即可求解.【詳解】第1次傳播,謠言一定不會回到最初的人;從第2次傳播開始,每1次謠言傳播,第一個制造謠言的人被選中的概率都是,沒有被選中的概率是.次傳播是相互獨立的,故為故答案為:【點睛】本題考查了相互獨立事件概率的乘法公式,考查了考生的分析能力,屬于基礎題.16、1【解析】
根據(jù)弦長為半徑的兩倍,得直線經(jīng)過圓心,將圓心坐標代入直線方程可解得.【詳解】解:圓的圓心為(1,1),半徑,
因為直線被圓截得的弦長為2,
所以直線經(jīng)過圓心(1,1),
,解得.故答案為:1.【點睛】本題考查了直線與圓相交的性質,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用勾股定理結合條件求得和,利用橢圓的定義求得的值,進而可得出,則橢圓的標準方程可求;(Ⅱ)設點、,將直線的方程與橢圓的方程聯(lián)立,利用韋達定理與弦長公式求出,利用幾何法求得直線截圓所得弦長,可得出關于的函數(shù)表達式,利用不等式的性質可求得的取值范圍.【詳解】(Ⅰ)在橢圓上,,,,,,,又,,,,橢圓的標準方程為;(Ⅱ)設點、,聯(lián)立消去,得,,則,,設圓的圓心到直線的距離為,則.,,,,的取值范圍為.【點睛】本題考查橢圓方程的求解,同時也考查了橢圓中弦長之積的取值范圍的求解,涉及韋達定理與弦長公式的應用,考查計算能力,屬于中等題.18、(1)見解析;(2)最大值為.【解析】
(1)將函數(shù)表示為分段函數(shù),利用函數(shù)的單調(diào)性求出該函數(shù)的最小值,進而可證得結論成立;(2)由可得出,并將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值,進而可得出實數(shù)的最大值.【詳解】(1).當時,函數(shù)單調(diào)遞減,則;當時,函數(shù)單調(diào)遞增,則;當時,函數(shù)單調(diào)遞增,則.綜上所述,,所以;(2)因為恒成立,且,,所以恒成立,即.因為,當且僅當時等號成立,所以,實數(shù)的最大值為.【點睛】本題考查含絕對值函數(shù)最值的求解,同時也考查了利用基本不等式恒成立求參數(shù),考查推理能力與計算能力,屬于中等題.19、(1);(2);(2)見解析.【解析】
(1)由圓的方程求出點坐標,得雙曲線的,再計算出后可得漸近線方程;(2)設,由圓方程與雙曲線方程聯(lián)立,消去后整理,可得,,由先求出,回代后求得坐標,計算;(3)由已知得,設,由圓方程與雙曲線方程聯(lián)立,消去后整理,可解得,,求出,從而可得,由,可知滿足要求的點不存在.【詳解】(1)由題意圓方程為,令得,∴,即,∴,,∴漸近線方程為.(2)由(1)圓方程為,,設,由得,(*),,,,所以,即,解得,方程(*)為,即,,代入雙曲線方程得,∵在第一、四象限,∴,,∴.(3)由題意,,,,,設由得:,,由得,解得,,,所以,,,當且僅當三點共線時,等號成立,∴軸上不存在點,使得.【點睛】本題考查求漸近線方程,考查圓與雙曲線相交問題.考查向量的加法運算,本題對學生的運算求解能力要求較高,解題時都是直接求出交點坐標.難度較大,屬于困難題.20、(1);(2)【解析】
(1)由已知條件和正弦定理進行邊角互化得,再根據(jù)余弦定理可求得值.(2)由正弦定理得,,代入得,運用三角形的面積公式可求得其值.【詳解】(1)由及正弦定理得,即由余弦定理得,,.(2)設外接圓的半徑為,則由正弦定理得,,,.【點睛】本題考查運用三角形的正弦定理、余弦定理、三角形的面積公式,關鍵在于熟練地運用其公式,合理地選擇進行邊角互化,屬于基礎題.21、(1)(2);時,取得最小值【解析】
(1)設等差數(shù)列的公差為,由,結合已知,聯(lián)立方程組,即可求得答案.(2)由(1)知,故可得,即可求得答案.【詳解】(1)設等差數(shù)列的公差為,由及,得解得數(shù)列的通項公式為(2)由(1)知時,取得最小值.【點睛】本題解題關鍵是掌握等差數(shù)列通項公式和前項和公式,考查了分析能力和計算能力,屬于基礎題.22、(1)證明見解析;(2)60°.【解析】試題分析:(1)連結PD,由題意可得,則AB⊥平面PDE,;(2)法一:結合幾何關系做出二面角的平面角,計算可得其正切值為,故二面角的大小為;法二:以D為原點建立空間直角坐標系,計算可得平面PBE的法向量.平面PAB的法向量為.據(jù)此計算可得二面角的大小為.試題解析:(1)連結PD,PA=PB,PDAB.,BCAB,DEAB.又,AB平面PDE,PE平面PDE,∴ABPE.(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版家用空調(diào)租賃及安裝維修一體化合同3篇
- 二零二五版國有土地儲備中心資產(chǎn)置換專項合同3篇
- 二零二五年智慧環(huán)保產(chǎn)業(yè)園區(qū)建設補貼協(xié)議范本3篇
- 二零二五版旅游度假區(qū)與旅游院校合作共建人才培養(yǎng)合同6篇
- 武漢華夏理工學院《土木工程施工技術A》2023-2024學年第一學期期末試卷
- 二零二五年紅酒年份品鑒代理銷售授權協(xié)議3篇
- 2024食用油綠色環(huán)保包裝設計制作合同3篇
- 2024年項目合作協(xié)議書模板
- 2024年食品工廠代加工食品安全責任合同范本2篇
- 二零二五年度車位買賣與車位抵押合同范本2篇
- 2023年河南省公務員錄用考試《行測》真題及答案解析
- 2024年安徽省公務員錄用考試《行測》真題及答案解析
- 山西省太原市重點中學2025屆物理高一第一學期期末統(tǒng)考試題含解析
- 充電樁項目運營方案
- 2024年農(nóng)民職業(yè)農(nóng)業(yè)素質技能考試題庫(附含答案)
- 高考對聯(lián)題(對聯(lián)知識、高考真題及答案、對應練習題)
- 新版《鐵道概論》考試復習試題庫(含答案)
- 【律師承辦案件費用清單】(計時收費)模板
- 高中物理競賽真題分類匯編 4 光學 (學生版+解析版50題)
- Unit1FestivalsandCelebrations詞匯清單高中英語人教版
- 2024年上海市中考語文試題卷(含答案)
評論
0/150
提交評論