《計(jì)量經(jīng)濟(jì)學(xué)導(dǎo)論》電子教案英文版_第1頁
《計(jì)量經(jīng)濟(jì)學(xué)導(dǎo)論》電子教案英文版_第2頁
《計(jì)量經(jīng)濟(jì)學(xué)導(dǎo)論》電子教案英文版_第3頁
《計(jì)量經(jīng)濟(jì)學(xué)導(dǎo)論》電子教案英文版_第4頁
《計(jì)量經(jīng)濟(jì)學(xué)導(dǎo)論》電子教案英文版_第5頁
已閱讀5頁,還剩42頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

WelcometoEconomics20

WhatisEconometrics?

Economics20-Prof.Anderson

WhystudyEconometrics?

Rareineconomics(andmanyotherareaswithoutlabs!)tohaveexperimentaldata

Needtousenonexperimental,orobservational,datatomakeinferences

Importanttobeabletoapplyeconomictheorytorealworlddata

Economics20-Prof.Anderson

WhystudyEconometrics?

Anempiricalanalysisusesdatatotestatheoryortoestimatearelationship

Aformaleconomicmodelcanbetested

Theorymaybeambiguousastotheeffectofsomepolicychange–canuseeconometricstoevaluatetheprogram

Economics20-Prof.Anderson

TypesofData–CrossSectional

Cross-sectionaldataisarandomsample

Eachobservationisanewindividual,firm,etc.withinformationatapointintime

Ifthedataisnotarandomsample,wehaveasample-selectionproblem

Economics20-Prof.Anderson

TypesofData–Panel

Canpoolrandomcrosssectionsandtreatsimilartoanormalcrosssection.Willjustneedtoaccountfortimedifferences.

Canfollowthesamerandomindividualobservationsovertime–knownaspaneldataorlongitudinaldata

Economics20-Prof.Anderson

TypesofData–TimeSeries

Timeseriesdatahasaseparateobservationforeachtimeperiod–e.g.stockprices

Sincenotarandomsample,differentproblemstoconsider

Trendsandseasonalitywillbeimportant

Economics20-Prof.Anderson

TheQuestionofCausality

Simplyestablishingarelationshipbetweenvariablesisrarelysufficient

Wanttotheeffecttobeconsideredcausal

Ifwe’vetrulycontrolledforenoughothervariables,thentheestimatedceterisparibuseffectcanoftenbeconsideredtobecausal

Canbedifficulttoestablishcausality

Economics20-Prof.Anderson

Example:ReturnstoEducation

Amodelofhumancapitalinvestmentimpliesgettingmoreeducationshouldleadtohigherearnings

Inthesimplestcase,thisimpliesanequationlike

Economics20-Prof.Anderson

Example:(continued)

Theestimateofb1,isthereturntoeducation,butcanitbeconsideredcausal?

Whiletheerrorterm,u,includesotherfactorsaffectingearnings,wanttocontrolforasmuchaspossible

Somethingsarestillunobserved,whichcanbeproblematic

Economics20-Prof.Anderson

TheSimpleRegressionModel

y=b0+b1x+u

Economics20-Prof.Anderson

SomeTerminology

Inthesimplelinearregressionmodel,wherey=b0+b1x+u,wetypicallyrefertoyasthe

DependentVariable,or

Left-HandSideVariable,or

ExplainedVariable,or

Regressand

Economics20-Prof.Anderson

SomeTerminology,cont.

Inthesimplelinearregressionofyonx,wetypicallyrefertoxasthe

IndependentVariable,or

Right-HandSideVariable,or

ExplanatoryVariable,or

Regressor,or

Covariate,or

ControlVariables

Economics20-Prof.Anderson

ASimpleAssumption

Theaveragevalueofu,theerrorterm,inthepopulationis0.Thatis,

E(u)=0

Thisisnotarestrictiveassumption,sincewecanalwaysuseb0tonormalizeE(u)to0

Economics20-Prof.Anderson

ZeroConditionalMean

Weneedtomakeacrucialassumptionabouthowuandxarerelated

Wewantittobethecasethatknowingsomethingaboutxdoesnotgiveusanyinformationaboutu,sothattheyarecompletelyunrelated.Thatis,that

E(u|x)=E(u)=0,whichimplies

E(y|x)=b0+b1x

Economics20-Prof.Anderson

.

.

x1

x2

E(y|x)asalinearfunctionofx,whereforanyx

thedistributionofyiscenteredaboutE(y|x)

E(y|x)=b0+b1x

y

f(y)

Economics20-Prof.Anderson

OrdinaryLeastSquares

Basicideaofregressionistoestimatethepopulationparametersfromasample

Let{(xi,yi):i=1,…,n}denotearandomsampleofsizenfromthepopulation

Foreachobservationinthissample,itwillbethecasethat

yi=b0+b1xi+ui

Economics20-Prof.Anderson

.

.

.

.

y4

y1

y2

y3

x1

x2

x3

x4

}

}

{

{

u1

u2

u3

u4

x

y

Populationregressionline,sampledatapoints

andtheassociatederrorterms

E(y|x)=b0+b1x

Economics20-Prof.Anderson

DerivingOLSEstimates

ToderivetheOLSestimatesweneedtorealizethatourmainassumptionofE(u|x)=E(u)=0alsoimpliesthat

Cov(x,u)=E(xu)=0

Why?RememberfrombasicprobabilitythatCov(X,Y)=E(XY)–E(X)E(Y)

Economics20-Prof.Anderson

DerivingOLScontinued

Wecanwriteour2restrictionsjustintermsofx,y,b0andb1,sinceu=y–b0–b1x

E(y–b0–b1x)=0

E[x(y–b0–b1x)]=0

Thesearecalledmomentrestrictions

Economics20-Prof.Anderson

DerivingOLSusingM.O.M.

Themethodofmomentsapproachtoestimationimpliesimposingthepopulationmomentrestrictionsonthesamplemoments

Whatdoesthismean?RecallthatforE(X),themeanofapopulationdistribution,asampleestimatorofE(X)issimplythearithmeticmeanofthesample

Economics20-Prof.Anderson

MoreDerivationofOLS

Wewanttochoosevaluesoftheparametersthatwillensurethatthesampleversionsofourmomentrestrictionsaretrue

Thesampleversionsareasfollows:

Economics20-Prof.Anderson

MoreDerivationofOLS

Giventhedefinitionofasamplemean,andpropertiesofsummation,wecanrewritethefirstconditionasfollows

Economics20-Prof.Anderson

MoreDerivationofOLS

Economics20-Prof.Anderson

SotheOLSestimatedslopeis

Economics20-Prof.Anderson

SummaryofOLSslopeestimate

Theslopeestimateisthesamplecovariancebetweenxandydividedbythesamplevarianceofx

Ifxandyarepositivelycorrelated,theslopewillbepositive

Ifxandyarenegativelycorrelated,theslopewillbenegative

Onlyneedxtovaryinoursample

Economics20-Prof.Anderson

MoreOLS

Intuitively,OLSisfittingalinethroughthesamplepointssuchthatthesumofsquaredresidualsisassmallaspossible,hencethetermleastsquares

Theresidual,??,isanestimateoftheerrorterm,u,andisthedifferencebetweenthefittedline(sampleregressionfunction)andthesamplepoint

Economics20-Prof.Anderson

.

.

.

.

y4

y1

y2

y3

x1

x2

x3

x4

}

}

{

{

??1

??2

??3

??4

x

y

Sampleregressionline,sampledatapoints

andtheassociatedestimatederrorterms

Economics20-Prof.Anderson

Alternateapproachtoderivation

Giventheintuitiveideaoffittingaline,wecansetupaformalminimizationproblem

Thatis,wewanttochooseourparameterssuchthatweminimizethefollowing:

Economics20-Prof.Anderson

Alternateapproach,continued

Ifoneusescalculustosolvetheminimizationproblemforthetwoparametersyouobtainthefollowingfirstorderconditions,whicharethesameasweobtainedbefore,multipliedbyn

Economics20-Prof.Anderson

AlgebraicPropertiesofOLS

ThesumoftheOLSresidualsiszero

Thus,thesampleaverageoftheOLSresidualsiszeroaswell

ThesamplecovariancebetweentheregressorsandtheOLSresidualsiszero

TheOLSregressionlinealwaysgoesthroughthemeanofthesample

Economics20-Prof.Anderson

AlgebraicProperties(precise)

Economics20-Prof.Anderson

Moreterminology

Economics20-Prof.Anderson

ProofthatSST=SSE+SSR

Economics20-Prof.Anderson

Goodness-of-Fit

Howdowethinkabouthowwelloursampleregressionlinefitsoursampledata?

Cancomputethefractionofthetotalsumofsquares(SST)thatisexplainedbythemodel,callthistheR-squaredofregression

R2=SSE/SST=1–SSR/SST

Economics20-Prof.Anderson

UsingStataforOLSregressions

Nowthatwe’vederivedtheformulaforcalculatingtheOLSestimatesofourparameters,you’llbehappytoknowyoudon’thavetocomputethembyhand

RegressionsinStataareverysimple,toruntheregressionofyonx,justtype

regyx

Economics20-Prof.Anderson

UnbiasednessofOLS

Assumethepopulationmodelislinearinparametersasy=b0+b1x+u

Assumewecanusearandomsampleofsizen,{(xi,yi):i=1,2,…,n},fromthepopulationmodel.Thuswecanwritethesamplemodelyi=b0+b1xi+ui

AssumeE(u|x)=0andthusE(ui|xi)=0

Assumethereisvariationinthexi

Economics20-Prof.Anderson

UnbiasednessofOLS(cont)

Inordertothinkaboutunbiasedness,weneedtorewriteourestimatorintermsofthepopulationparameter

Startwithasimplerewriteoftheformulaas

Economics20-Prof.Anderson

UnbiasednessofOLS(cont)

Economics20-Prof.Anderson

UnbiasednessofOLS(cont)

Economics20-Prof.Anderson

UnbiasednessofOLS(cont)

Economics20-Prof.Anderson

UnbiasednessSummary

TheOLSestimatesofb1andb0areunbiased

Proofofunbiasednessdependsonour4assumptions–ifanyassumptionfails,thenOLSisnotnecessarilyunbiased

Rememberunbiasednessisadescriptionoftheestimator–inagivensamplewemaybe“near”or“far”fromthetrueparameter

Economics20-Prof.Anderson

VarianceoftheOLSEstimators

Nowweknowthatthesamplingdistributionofourestimateiscenteredaroundthetrueparameter

Wanttothinkabouthowspreadoutthisdistributionis

Mucheasiertothinkaboutthisvarianceunderanadditionalassumption,so

AssumeVar(u|x)=s2(Homoskedasticity)

Economics20-Prof.Anderson

VarianceofOLS(cont)

Var(u|x)=E(u2|x)-[E(u|x)]2

E(u|x)=0,sos2=E(u2|x)=E(u2)=Var(u)

Thuss2isalsotheunconditionalvariance,calledtheerrorvariance

s,thesquarerootoftheerrorvarianceiscalledthestandarddeviationoftheerror

Cansay:E(y|x)=b0+b1xandVar(y|x)=s2

Economics20-Prof.Anderson

.

.

x1

x2

HomoskedasticCase

E(y|x)=b0+b1x

y

f(y|x)

Economics20-Prof.Anderson

.

x

x1

x2

y

f(y|x)

HeteroskedasticCase

x3

.

.

E(y|x)=b0+b1x

Economics20-Prof.Anderson

VarianceofOLS(cont)

Economics20-Prof.Anderson

VarianceofOLSSummary

Thelargertheerrorvariance,s2,thelargerthevarianceoftheslopeestimate

Thelargerthevariabilityinthexi,thesmallerthevarianceoftheslopeestimate

Asaresult,alargersamplesizeshoulddecreasethevarianceoftheslopeestimate

Problemthattheerrorvarianceisunknown

Economics20-Prof.Anderson

EstimatingtheErrorVariance

Wedon’tknowwhattheerrorvariance,s2,is,becausewedon’tobservetheerrors,ui

Whatweobservearetheresiduals,??i

Wecanusetheresidualstoformanestimateoftheerrorvariance

Economics20-Prof.Anderson

ErrorVarianceEstimate(cont)

Economics20-Prof.Anderson

ErrorVarianceEstimate(cont)

Economics20-Prof.Anderson

MultipleRegressionAnalysis

y=b0+b1x1+b2x2+...bkxk+u

1.Estimation

Economics20-Prof.Anderson

ParallelswithSimpleRegression

b0isstilltheintercept

b1tobkallcalledslopeparameters

uisstilltheerrorterm(ordisturbance)

Stillneedtomakeazeroconditionalmeanassumption,sonowassumethat

E(u|x1,x2,…,xk)=0

Stillminimizingthesumofsquaredresiduals,sohavek+1firstorderconditions

Economics20-Prof.Anderson

InterpretingMultipleRegression

Economics20-Prof.Anderson

A“PartiallingOut”Interpretation

Economics20-Prof.Anderson

“PartiallingOut”continued

Previousequationimpliesthatregressingyonx1andx2givessameeffectofx1asregressingyonresidualsfromaregressionofx1onx2

Thismeansonlythepartofxi1thatisuncorrelatedwithxi2arebeingrelatedtoyisowe’reestimatingtheeffectofx1onyafterx2hasbeen“partialledout”

Economics20-Prof.Anderson

SimplevsMultipleRegEstimate

Economics20-Prof.Anderson

Goodness-of-Fit

Economics20-Prof.Anderson

Goodness-of-Fit(continued)

Howdowethinkabouthowwelloursampleregressionlinefitsoursampledata?

Cancomputethefractionofthetotalsumofsquares(SST)thatisexplainedbythemodel,callthistheR-squaredofregression

R2=SSE/SST=1–SSR/SST

Economics20-Prof.Anderson

Goodness-of-Fit(continued)

Economics20-Prof.Anderson

MoreaboutR-squared

R2canneverdecreasewhenanotherindependentvariableisaddedtoaregression,andusuallywillincrease

BecauseR2willusuallyincreasewiththenumberofindependentvariables,itisnotagoodwaytocomparemodels

Economics20-Prof.Anderson

AssumptionsforUnbiasedness

Populationmodelislinearinparameters:y=b0+b1x1+b2x2+…+bkxk+u

Wecanusearandomsampleofsizen,{(xi1,xi2,…,xik,yi):i=1,2,…,n},fromthepopulationmodel,sothatthesamplemodelisyi=b0+b1xi1+b2xi2+…+bkxik+ui

E(u|x1,x2,…xk)=0,implyingthatalloftheexplanatoryvariablesareexogenous

Noneofthex’sisconstant,andtherearenoexactlinearrelationshipsamongthem

Economics20-Prof.Anderson

TooManyorTooFewVariables

Whathappensifweincludevariablesinourspecificationthatdon’tbelong?

Thereisnoeffectonourparameterestimate,andOLSremainsunbiased

Whatifweexcludeavariablefromourspecificationthatdoesbelong?

OLSwillusuallybebiased

Economics20-Prof.Anderson

OmittedVariableBias

Economics20-Prof.Anderson

OmittedVariableBias(cont)

Economics20-Prof.Anderson

OmittedVariableBias(cont)

Economics20-Prof.Anderson

OmittedVariableBias(cont)

Economics20-Prof.Anderson

SummaryofDirectionofBias

Positivebias

Negativebias

b2<0

Negativebias

Positivebias

b2>0

Corr(x1,x2)<0

Corr(x1,x2)>0

Economics20-Prof.Anderson

OmittedVariableBiasSummary

Twocaseswherebiasisequaltozero

b2=0,thatisx2doesn’treallybelonginmodel

x1andx2areuncorrelatedinthesample

Ifcorrelationbetweenx2,x1andx2,yisthesamedirection,biaswillbepositive

Ifcorrelationbetweenx2,x1andx2,yistheoppositedirection,biaswillbenegative

Economics20-Prof.Anderson

TheMoreGeneralCase

Technically,canonlysignthebiasforthemoregeneralcaseifalloftheincludedx’sareuncorrelated

Typically,then,weworkthroughthebiasassumingthex’sareuncorrelated,asausefulguideevenifthisassumptionisnotstrictlytrue

Economics20-Prof.Anderson

VarianceoftheOLSEstimators

Nowweknowthatthesamplingdistributionofourestimateiscenteredaroundthetrueparameter

Wanttothinkabouthowspreadoutthisdistributionis

Mucheasiertothinkaboutthisvarianceunderanadditionalassumption,so

AssumeVar(u|x1,x2,…,xk)=s2(Homoskedasticity)

Economics20-Prof.Anderson

VarianceofOLS(cont)

Letxstandfor(x1,x2,…xk)

AssumingthatVar(u|x)=s2alsoimpliesthatVar(y|x)=s2

The4assumptionsforunbiasedness,plusthishomoskedasticityassumptionareknownastheGauss-Markovassumptions

Economics20-Prof.Anderson

VarianceofOLS(cont)

Economics20-Prof.Anderson

ComponentsofOLSVariances

Theerrorvariance:alargers2impliesalargervariancefortheOLSestimators

Thetotalsamplevariation:alargerSSTjimpliesasmallervariancefortheestimators

Linearrelationshipsamongtheindependentvariables:alargerRj2impliesalargervariancefortheestimators

Economics20-Prof.Anderson

MisspecifiedModels

Economics20-Prof.Anderson

MisspecifiedModels(cont)

Whilethevarianceoftheestimatorissmallerforthemisspecifiedmodel,unlessb2=0themisspecifiedmodelisbiased

Asthesamplesizegrows,thevarianceofeachestimatorshrinkstozero,makingthevariancedifferencelessimportant

Economics20-Prof.Anderson

EstimatingtheErrorVariance

Wedon’tknowwhattheerrorvariance,s2,is,becausewedon’tobservetheerrors,ui

Whatweobservearetheresiduals,??i

Wecanusetheresidualstoformanestimateoftheerrorvariance

Economics20-Prof.Anderson

ErrorVarianceEstimate(cont)

df=n–(k+1),ordf=n–k–1

df(i.e.degreesoffreedom)isthe(numberofobservations)–(numberofestimatedparameters)

Economics20-Prof.Anderson

TheGauss-MarkovTheorem

Givenour5Gauss-MarkovAssumptionsitcanbeshownthatOLSis“BLUE”

Best

Linear

Unbiased

Estimator

Thus,iftheassumptionshold,useOLS

Economics20-Prof.Anderson

MultipleRegressionAnalysis

y=b0+b1x1+b2x2+...bkxk+u

2.Inference

Economics20-Prof.Anderson

AssumptionsoftheClassicalLinearModel(CLM)

Sofar,weknowthatgiventheGauss-Markovassumptions,OLSisBLUE,

Inordertodoclassicalhypothesistesting,weneedtoaddanotherassumption(beyondtheGauss-Markovassumptions)

Assumethatuisindependentofx1,x2,…,xkanduisnormallydistributedwithzeromeanandvariances2:u~Normal(0,s2)

Economics20-Prof.Anderson

CLMAssumptions(cont)

UnderCLM,OLSisnotonlyBLUE,butistheminimumvarianceunbiasedestimator

WecansummarizethepopulationassumptionsofCLMasfollows

y|x~Normal(b0+b1x1+…+bkxk,s2)

Whilefornowwejustassumenormality,clearthatsometimesnotthecase

Largesampleswillletusdropnormality

Economics20-Prof.Anderson

.

.

x1

x2

Thehomoskedasticnormaldistributionwith

asingleexplanatoryvariable

E(y|x)=b0+b1x

y

f(y|x)

Normal

distributions

Economics20-Prof.Anderson

NormalSamplingDistributions

Economics20-Prof.Anderson

ThetTest

Economics20-Prof.Anderson

ThetTest(cont)

Knowingthesamplingdistributionforthestandardizedestimatorallowsustocarryouthypothesistests

Startwithanullhypothesis

Forexample,H0:bj=0

Ifacceptnull,thenacceptthatxjhasnoeffectony,controllingforotherx’s

Economics20-Prof.Anderson

ThetTest(cont)

Economics20-Prof.Anderson

tTest:One-SidedAlternatives

Besidesournull,H0,weneedanalternativehypothesis,H1,andasignificancelevel

H1maybeone-sided,ortwo-sided

H1:bj>0andH1:bj<0areone-sided

H1:bj??0isatwo-sidedalternative

Ifwewanttohaveonlya5%probabilityofrejectingH0ifitisreallytrue,thenwesayoursignificancelevelis5%

Economics20-Prof.Anderson

One-SidedAlternatives(cont)

Havingpickedasignificancelevel,a,welookupthe(1–a)thpercentileinatdistributionwithn–k–1dfandcallthisc,thecriticalvalue

Wecanrejectthenullhypothesisifthetstatisticisgreaterthanthecriticalvalue

Ifthetstatisticislessthanthecriticalvaluethenwefailtorejectthenull

Economics20-Prof.Anderson

yi=b0+b1xi1+…+bkxik+ui

H0:bj=0H1:bj>0

c

0

a

(1-a)

One-SidedAlternatives(cont)

Failtoreject

reject

Economics20-Prof.Anderson

One-sidedvsTwo-sided

Becausethetdistributionissymmetric,testingH1:bj<0isstraightforward.Thecriticalvalueisjustthenegativeofbefore

Wecanrejectthenullifthetstatistic<–c,andifthetstatistic>than–cthenwefailtorejectthenull

Foratwo-sidedtest,wesetthecriticalvaluebasedona/2andrejectH1:bj??0iftheabsolutevalueofthetstatistic>c

Economics20-Prof.Anderson

yi=b0+b1Xi1+…+bkXik+ui

H0:bj=0H1:bj>0

c

0

a/2

(1-a)

-c

a/2

Two-SidedAlternatives

reject

reject

failtoreject

Economics20-Prof.Anderson

SummaryforH0:bj=0

Unlessotherwisestated,thealternativeisassumedtobetwo-sided

Ifwerejectthenull,wetypicallysay“xjisstatisticallysignificantatthea%level”

Ifwefailtorejectthenull,wetypicallysay“xjisstatisticallyinsignificantatthea%level”

Economics20-Prof.Anderson

Testingotherhypotheses

AmoregeneralformofthetstatisticrecognizesthatwemaywanttotestsomethinglikeH0:bj=aj

Inthiscase,theappropriatetstatisticis

Economics20-Prof.Anderson

ConfidenceIntervals

Anotherwaytouseclassicalstatisticaltestingistoconstructaconfidenceintervalusingthesamecriticalvalueaswasusedforatwo-sidedtest

A(1-a)%confidenceintervalisdefinedas

Economics20-Prof.Anderson

Computingp-valuesforttests

Analternativetotheclassicalapproachistoask,“whatisthesmallestsignificancelevelatwhichthenullwouldberejected?”

So,computethetstatistic,andthenlookupwhatpercentileitisintheappropriatetdistribution–thisisthep-value

p-valueistheprobabilitywewouldobservethetstatisticwedid,ifthenullweretrue

Economics20-Prof.Anderson

Stataandp-values,ttests,etc.

Mostcomputerpackageswillcomputethep-valueforyou,assumingatwo-sidedtest

Ifyoureallywantaone-sidedalternative,justdividethetwo-sidedp-valueby2

Stataprovidesthetstatistic,p-value,and95%confidenceintervalforH0:bj=0foryou,incolumnslabeled“t”,“P>|t|”and“[95%Conf.Interval]”,respectively

Economics20-Prof.Anderson

TestingaLinearCombination

Supposeinsteadoftestingwhetherb1isequaltoaconstant,youwanttotestifitisequaltoanotherparameter,thatisH0:b1=b2

Usesamebasicprocedureforformingatstatistic

Economics20-Prof.Anderson

TestingLinearCombo(cont)

Economics20-Prof.Anderson

TestingaLinearCombo(cont)

So,touseformula,needs12,whichstandardoutputdoesnothave

Manypackageswillhaveanoptiontogetit,orwilljustperformthetestforyou

InStata,afterregyx1x2…xkyouwouldtypetestx1=x2togetap-valueforthetest

Moregenerally,youcanalwaysrestatetheproblemtogetthetestyouwant

Economics20-Prof.Anderson

Example:

Supposeyouareinterestedintheeffectofcampaignexpendituresonoutcomes

ModelisvoteA=b0+b1log(expendA)+b2log(expendB)+b3prtystrA+u

H0:b1=-b2,orH0:q1=b1+b2=0

b1=q1–b2,sosubstituteinandrearrange??voteA=b0+q1log(expendA)+b2log(expendB-expendA)+b3prtystrA+u

Economics20-Prof.Anderson

Example(cont):

Thisisthesamemodelasoriginally,butnowyougetastandarderrorforb1–b2=q1directlyfromthebasicregression

Anylinearcombinationofparameterscouldbetestedinasimilarmanner

Otherexamplesofhypothesesaboutasinglelinearcombinationofparameters:

b1=1+b2;b1=5b2;b1=-1/2b2;etc

Economics20-Prof.Anderson

MultipleLinearRestrictions

Everythingwe’vedonesofarhasinvolvedtestingasinglelinearrestriction,(e.g.b1=0orb1=b2)

However,wemaywanttojointlytestmultiplehypothesesaboutourparameters

Atypicalexampleistesting“exclusionrestrictions”–wewanttoknowifagroupofparametersareallequaltozero

Economics20-Prof.Anderson

TestingExclusionRestrictions

NowthenullhypothesismightbesomethinglikeH0:bk-q+1=0,...,bk=0

ThealternativeisjustH1:H0isnottrue

Can’tjustcheckeachtstatisticseparately,becausewewanttoknowiftheqparametersarejointlysignificantatagivenlevel–itispossiblefornonetobeindividuallysignificantatthatlevel

Economics20-Prof.Anderson

ExclusionRestrictions(cont)

Todothetestweneedtoestimatethe“restrictedmodel”withoutxk-q+1,,…,xkincluded,aswellasthe“unrestrictedmodel”withallx’sincluded

Intuitively,wewanttoknowifthechangeinSSRisbigenoughtowarrantinclusionofxk-q+1,,…,xk

Economics20-Prof.Anderson

TheFstatistic

TheFstatisticisalwayspositive,sincetheSSRfromtherestrictedmodelcan’tbelessthantheSSRfromtheunrestricted

EssentiallytheFstatisticismeasuringtherelativeincreaseinSSRwhenmovingfromtheunrestrictedtorestrictedmodel

q=numberofrestrictions,ordfr–dfur

n–k–1=dfur

Economics20-Prof.Anderson

TheFstatistic(cont)

TodecideiftheincreaseinSSRwhenwemovetoarestrictedmodelis“bigenough”torejecttheexclusions,weneedtoknowaboutthesamplingdistributionofourFstat

Notsurprisingly,F~Fq,n-k-1,whereqisreferredtoasthenumeratordegreesoffreedomandn–k–1asthedenominatordegreesoffreedom

Economics20-Prof.Anderson

0

c

a

(1-a)

f(F)

F

TheFstatistic(cont)

reject

failtoreject

RejectH0ata

significancelevel

ifF>c

Economics20-Prof.Anderson

TheR2formoftheFstatistic

BecausetheSSR’smaybelargeandunwieldy,analternativeformoftheformulaisuseful

WeusethefactthatSSR=SST(1–R2)foranyregression,socansubstituteinforSSRuandSSRur

Economics20-Prof.Anderson

OverallSignificance

AspecialcaseofexclusionrestrictionsistotestH0:b1=b2=…=bk=0

SincetheR2fromamodelwithonlyaninterceptwillbezero,theFstatisticissimply

Economics20-Prof.Anderson

GeneralLinearRestrictions

ThebasicformoftheFstatisticwillworkforanysetoflinearrestrictions

Firstestimatetheunrestrictedmodelandthenestimatetherestrictedmodel

Ineachcase,makenoteoftheSSR

Imposingtherestrictionscanbetricky–willlikelyhavetoredefinevariablesagain

Economics20-Prof.Anderson

Example:

Usesamevotingmodelasbefore

ModelisvoteA=b0+b1log(expendA)+b2log(expendB)+b3prtystrA+u

nownullisH0:b1=1,b3=0

Substitutingintherestrictions:voteA=b0+log(expendA)+b2log(expendB)+u,so

UsevoteA-log(expendA)=b0+b2log(expendB)+uasrestrictedmodel

Economics20-Prof.Anderson

FStatisticSummary

Justaswithtstatistics,p-valuescanbecalculatedbylookingupthepercentileintheappropriateFdistribution

Statawilldothisbyentering:displayfprob(q,n–k–1,F),wheretheappropriatevaluesofF,q,andn–k–1areused

Ifonlyoneexclusionisbeingtested,thenF=t2,andthep-valueswillbethesame

Economics20-Prof.Anderson

MultipleRegressionAnalysis

y=b0+b1x1+b2x2+...bkxk+u

3.AsymptoticProperties

Economics20-Prof.Anderson

Consistency

UndertheGauss-MarkovassumptionsOLSisBLUE,butinothercasesitwon’talwaysbepossibletofindunbiasedestimators

Inthosecases,wemaysettleforestimatorsthatareconsistent,meaningasn??∞,thedistributionoftheestimatorcollapsestotheparametervalue

Economics20-Prof.Anderson

SamplingDistributionsasn??

b1

n1

n2

n3

n1<n2<n3

Economics20-Prof.Anderson

ConsistencyofOLS

UndertheGauss-Markovassumptions,theOLSestimatorisconsistent(andunbiased)

Consistencycanbeprovedforthesimpleregressioncaseinamannersimilartotheproofofunbiasedness

Willneedtotakeprobabilitylimit(plim)toestablishconsistency

Economics20-Prof.Anderson

ProvingConsistency

Economics20-Prof.Anderson

AWeakerAssumption

Forunbiasedness,weassumedazeroconditionalmean–E(u|x1,x2,…,xk)=0

Forconsistency,wecanhavetheweakerassumptionofzeromeanandzerocorrelation–E(u)=0andCov(xj,u)=0,forj=1,2,…,k

Withoutthisassumption,OLSwillbebiasedandinconsistent!

Economics20-Prof.Anderson

DerivingtheInconsistency

Justaswecouldderivetheomittedvariablebiasearlier,nowwewanttothinkabouttheinconsistency,orasymptoticbias,inthiscase

Economics20-Prof.Anderson

AsymptoticBias(cont)

So,thinkingaboutthedirectionoftheasymptoticbiasi

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論