15平面上的距離(2)-2021-2022學(xué)年高二數(shù)學(xué)培優(yōu)訓(xùn)練(2019選擇性)_第1頁
15平面上的距離(2)-2021-2022學(xué)年高二數(shù)學(xué)培優(yōu)訓(xùn)練(2019選擇性)_第2頁
15平面上的距離(2)-2021-2022學(xué)年高二數(shù)學(xué)培優(yōu)訓(xùn)練(2019選擇性)_第3頁
15平面上的距離(2)-2021-2022學(xué)年高二數(shù)學(xué)培優(yōu)訓(xùn)練(2019選擇性)_第4頁
15平面上的距離(2)-2021-2022學(xué)年高二數(shù)學(xué)培優(yōu)訓(xùn)練(2019選擇性)_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1.5平面上的距離(2)(滿分100分時間:40分鐘)班級姓名得分一、單項(xiàng)選擇題:1.如圖,已知,,,,,一束光線從點(diǎn)出發(fā)射到上的點(diǎn),經(jīng)反射后,再經(jīng)反射,落到線段上(不含端點(diǎn)),則直線的斜率的取值范圍為()A. B. C. D.【答案】B【分析】設(shè)關(guān)于直線對稱的點(diǎn)為,關(guān)于直線對稱的點(diǎn)為,連接與直線分別交于,連接,分別與直線交于,由題意,在線段之間即可,算出兩點(diǎn)的坐標(biāo)結(jié)合斜率公式即可得到答案.【詳解】設(shè)關(guān)于直線對稱的點(diǎn)為,關(guān)于直線對稱的點(diǎn)為,連接與直線分別交于,連接,分別與直線交于,由題意,在線段之間即可,又,直線的方程為,設(shè),則,解得,所以,同理可得關(guān)于直線對稱的點(diǎn),所以直線:,又直線方程為:,所以,所以直線方程為:,即,由,得,所以,又易得方程為:,所以,所以.故選:B【點(diǎn)睛】本題考查求點(diǎn)關(guān)于直線對稱的點(diǎn)、兩直線的交點(diǎn)的問題,涉及到入射光線、反射光線,考查學(xué)生的數(shù)學(xué)計(jì)算能力,是一道有一定難度的題.2.已知長方形的四個頂點(diǎn):、、、.一質(zhì)點(diǎn)從點(diǎn)出發(fā),沿與夾角為的方向射到上的點(diǎn)后,依次反射到、和上的點(diǎn)、、(入射角等于反射角).設(shè)的坐標(biāo)為,若,則的范圍是A. B. C. D.【答案】B【分析】將矩形先向右平移個單位,再向上平移個單位得到矩形,再將矩形向右平移個單位,得到矩形,過點(diǎn)作軸,可得,計(jì)算出的取值范圍,可得出,由此可得出的取值范圍.【詳解】將矩形先向右平移個單位,再向上平移個單位得到矩形,再將矩形向右平移個單位,得到矩形,如下圖所示:延長分別交、、于點(diǎn)、、,過點(diǎn)作軸,垂足為點(diǎn),則,由對稱性結(jié)合圖形可知,,且有,,,所以,,在中,.故選:B.【點(diǎn)睛】本題考查利用光線反射求角的正切值的取值范圍,解題的關(guān)鍵就是利用對稱性進(jìn)行轉(zhuǎn)化,利用數(shù)形結(jié)合思想求解,考查數(shù)形結(jié)合思想的應(yīng)用,屬于難題.3.在平面直角坐標(biāo)系中,如果一個多邊形的頂點(diǎn)全是格點(diǎn)(橫縱坐標(biāo)都是整數(shù)),那么稱該多邊形為格點(diǎn)多邊形,若△ABC是格點(diǎn)三角形,其中A(0,0),B(4,0),且面積為8,則該三角形邊界上的格點(diǎn)個數(shù)不可能為()A.6 B.8 C.10 D.12【答案】C【分析】畫出圖像,根據(jù)不同的位置得到答案.【詳解】如圖所示:當(dāng)頂點(diǎn)處于位置時,格點(diǎn)數(shù)為;當(dāng)頂點(diǎn)處于位置時,格點(diǎn)數(shù)為;當(dāng)頂點(diǎn)處于位置時,格點(diǎn)數(shù)為;無論頂點(diǎn)處于什么位置都不能是格點(diǎn)數(shù)為;故選:【點(diǎn)睛】本題考查了三角形的邊界整數(shù)點(diǎn)問題,畫出圖像是解題的關(guān)鍵.4.已知在中,其中,,的平分線所在的直線方程為,則的面積為()A. B. C.8 D.【答案】C【分析】首先求得直線與直線的交點(diǎn)的坐標(biāo),利用到直線的距離相等列方程,解方程求得點(diǎn)的坐標(biāo).利用到直線的距離以及的長,求得三角形的面積.【詳解】直線的方程為,即.由解得.設(shè),直線的方程分別為,即,.根據(jù)角平分線的性質(zhì)可知,到直線的距離相等,所以,,由于,所以上式可化為,兩邊平方并化簡得,解得(),所以.所以到直線的距離為,而,所以.故選:C【點(diǎn)睛】本小題主要考查直線方程的求法,考查直線與直線交點(diǎn)坐標(biāo),考查點(diǎn)到直線距離公式、兩點(diǎn)間的距離公式,考查角平分線的性質(zhì),考查數(shù)形結(jié)合的數(shù)學(xué)思想方法5.已知點(diǎn),直線和,若點(diǎn)、分別是、上與、兩點(diǎn)距離的平方和最小的點(diǎn),則等于()A.1 B.2 C. D.【答案】B【分析】設(shè),則,得到,得到,再計(jì)算得到答案.【詳解】設(shè),則,當(dāng)時有最小值,故當(dāng)時有最小值,故,故故選:【點(diǎn)睛】本題考查了距離的最值,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.二、多選題6.(多選題)光線自點(diǎn)射入,經(jīng)傾斜角為的直線反射后經(jīng)過點(diǎn),則反射光線還經(jīng)過下列哪個點(diǎn)()A. B. C. D.【答案】BD【分析】求出點(diǎn)關(guān)于直線的對稱點(diǎn)的坐標(biāo),求出反射光線所在直線的方程,逐一驗(yàn)證各選項(xiàng)中的點(diǎn)是否在反射光線所在直線上,由此可得出合適的選項(xiàng).【詳解】因?yàn)橹本€的傾斜角為,所以直線的斜率為,設(shè)點(diǎn)關(guān)于直線的對稱點(diǎn)為,則,解得,所以,反射光線經(jīng)過點(diǎn)和點(diǎn),反射光線所在直線的斜率為,則反射光線所在直線的方程為,當(dāng)時,;當(dāng)時,.故選:BD.【點(diǎn)睛】結(jié)論點(diǎn)睛:若點(diǎn)與點(diǎn)關(guān)于直線對稱,由方程組可得到點(diǎn)關(guān)于直線的對稱點(diǎn)的坐標(biāo)(其中,).7.在平面直角坐標(biāo)系中,定義為兩點(diǎn)之間的“折線距離”,則下列說法中正確的是()A.若點(diǎn)在線段上,則有B.若是三角形的三個頂點(diǎn),則有C.到兩點(diǎn)的“折線距離”相等的點(diǎn)的軌跡是直線D.若為坐標(biāo)原點(diǎn),點(diǎn)在直線上,則的最小值為【答案】AC【分析】對A,根據(jù)“折線距離”的定義化簡可得;對B,由絕對值不等式可判斷;對C,設(shè)出點(diǎn)的坐標(biāo),根據(jù)定義列出方程即可求解;對D,由可判斷.【詳解】對A,若點(diǎn)在線段上,設(shè),則在之間,在之間,則,故A正確;對B,在中,,故B錯誤;對C,設(shè)到兩點(diǎn)的“折線距離”相等的點(diǎn)的坐標(biāo)為,則,解得,故C正確;對D,設(shè),則,即的最小值為,故D錯誤.故選:AC.【點(diǎn)睛】本題考查“折線距離”的應(yīng)用,屬于新定義問題,解題的關(guān)鍵是正確理解定義,并結(jié)合絕對值不等式進(jìn)行化簡判斷.8.下列結(jié)論正確的是()A.若直線和的斜率相等,則B.已知直線,(、、、、、為常數(shù)),若直線,則C.點(diǎn)到直線的距離為D.直線外一點(diǎn)與直線上一點(diǎn)的距離的最小值就是點(diǎn)到直線的距離【答案】BD【分析】根據(jù)兩直線的位置關(guān)系與斜率的關(guān)系可判斷A選項(xiàng)的正誤;利用兩直線垂直與一般方程的關(guān)系可判斷B選項(xiàng)的正誤;利用點(diǎn)到直線的距離公式可判斷C選項(xiàng)的正誤;利用點(diǎn)到直線距離的定義可判斷D選項(xiàng)的正誤.【詳解】對于A選項(xiàng),若直線和的斜率相等,則與平行或重合,A選項(xiàng)錯誤;對于B選項(xiàng),已知直線,(、、、、、為常數(shù)).當(dāng)直線和的斜率都存在時,則,,直線的斜率為,直線的斜率為,若,則,可得;當(dāng)直線和分別與兩坐標(biāo)軸垂直,設(shè)軸,則軸,則,,滿足.綜上所述,若直線,則,B選項(xiàng)正確;對于C選項(xiàng),直線的一般方程為,所以,點(diǎn)到直線的距離為,C選項(xiàng)錯誤;對于D選項(xiàng),由點(diǎn)到直線的距離的定義可知,直線外一點(diǎn)與直線上一點(diǎn)的距離的最小值就是點(diǎn)到直線的距離,D選項(xiàng)正確.故選:BD.【點(diǎn)睛】結(jié)論點(diǎn)睛:利用一般式方程判定直線的平行與垂直:已知直線和直線.(1)且;(2).9.在平面直角坐標(biāo)系中,已知點(diǎn)?,定義為兩點(diǎn)A,B的“折線距離”,又設(shè)點(diǎn)P及直線l上任意一點(diǎn)Q,稱的最小值為點(diǎn)P到直線l的“折線距離”,記作,下列說法正確的是()A.對任意的兩點(diǎn)A,B,都有B.對任意三點(diǎn)A?B?C,都有C.已知點(diǎn)和直線,則D.已知點(diǎn),動點(diǎn)滿足,則動點(diǎn)P的軌跡圍成平面圖形的面積是2【答案】ABD【分析】根據(jù)“折線距離”的定義利用絕對值的性質(zhì)進(jìn)行驗(yàn)證判斷.【詳解】,所以,即,A正確;由絕對值三角不等式知,,所以,即,B正確;設(shè)是上任一點(diǎn),,當(dāng)且僅當(dāng)時,等號成立,所以的最小值為2,即,C錯;設(shè),則,在平面直角坐標(biāo)系中,曲線是一個正方形,如圖,,得正方形內(nèi)部面積為,D正確.故選:ABD.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查新定義,解題關(guān)鍵是理解新定義,把新定義下的“距離”用絕對值表示后,利用絕對值性質(zhì)求解證明.三、填空題10.在平面直角坐標(biāo)系中,過點(diǎn)的一條直線與函數(shù)的圖像交于兩點(diǎn),則線段長的最小值是__________.【答案】【分析】設(shè),得到當(dāng)直線與函數(shù)過點(diǎn)的切線垂直時,線段最短,利用導(dǎo)數(shù)的幾何意義求出切線的坐標(biāo),進(jìn)而可求得答案.【詳解】設(shè),點(diǎn)為直線與函數(shù)在第一象限的焦點(diǎn),則,可得當(dāng)直線與函數(shù)過點(diǎn)的切線垂直時,線段最短,設(shè)切點(diǎn),函數(shù)的導(dǎo)數(shù)為,則,解得,此時,所以線段長的最小值為,故答案為.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義,兩點(diǎn)間的距離公司,以及兩直線垂直的條件等知識的綜合應(yīng)用,著重考查了分析問題和解答問題的能力,以及運(yùn)算與求解能力11.已知實(shí)數(shù)滿足,則的最小值為_______.【答案】【分析】實(shí)數(shù)滿足表示點(diǎn)在直線上,可以看作點(diǎn)到原點(diǎn)的距離,最小值是原點(diǎn)到直線的距離,根據(jù)點(diǎn)到直線的距離公式求解.【詳解】因?yàn)閷?shí)數(shù)滿足=1所以表示直線上點(diǎn)到原點(diǎn)的距離,故的最小值為原點(diǎn)到直線的距離,即,故的最小值為1.【點(diǎn)睛】本題考查點(diǎn)到點(diǎn),點(diǎn)到直線的距離公式,此題的關(guān)鍵在于的最小值所表示的幾何意義的識別.12.在平面直角坐標(biāo)系中,已知直線與點(diǎn),若直線上存在點(diǎn)滿足,(為坐標(biāo)原點(diǎn)),則實(shí)數(shù)的取值范圍是________【答案】【分析】先設(shè),根據(jù),,得到,再由題意,得到,求解,即可得出結(jié)果.【詳解】由題意設(shè),因?yàn)辄c(diǎn),,所以,整理得:①因?yàn)橹本€上存在點(diǎn)滿足,所以方程①有解,因此,解得.故答案為【點(diǎn)睛】本題主要考查兩點(diǎn)間距離公式的應(yīng)用,熟記公式即可,屬于??碱}型.四、解答題13.在平面直角坐標(biāo)系內(nèi),對于任意兩點(diǎn),定義它們之間的“曼哈頓距離”為.(1)求線段上一點(diǎn)到原點(diǎn)的“曼哈頓距離”;(2)求所有到定點(diǎn)的“曼哈頓距離”均為的動點(diǎn)圍成的圖形的周長;(3)眾所周知,對于“歐幾里得距離”,有如下三個正確的結(jié)論:①對于平面上任意三點(diǎn),都有;②對于平面上不在同一直線上的任意三點(diǎn),若,則是以為直角的直角三角形;③對于平面上兩個不同的定點(diǎn),若動點(diǎn)滿足,則動點(diǎn)的軌跡是線段的垂直平分線;上述結(jié)論對于“曼哈頓距離”是否依然正確?說明理由.【答案】(1)2;(2);(3)①正確,②錯誤,③錯誤,理由見解析【分析】(1)直接根據(jù)新定義計(jì)算;(2)不妨取點(diǎn)為原點(diǎn),求出所有到定點(diǎn)的“曼哈頓距離”均為的動點(diǎn)圍成的圖形,然后再求圖形的周長.(3)用“曼哈頓距離”表示出三個命題的條件,代入檢驗(yàn)判斷三個命題是否正確.【詳解】(1)因?yàn)樵诰€段上,所以,;(2)不妨設(shè)點(diǎn)就是原點(diǎn)(否則把到平移到原點(diǎn),不改變圖形的周長),若在第一象限(含軸正半軸),則,因此點(diǎn)在線段上,其長度為,根據(jù)對稱性,它在第二象限、第三象限、第四象限的部分(含相應(yīng)坐標(biāo)軸上的點(diǎn))都是一條線段,長度均為,所以總長度為.(3)對平面上任意三點(diǎn),“曼哈頓距離”為:,,①由絕對值的性質(zhì)顯然有,,所以,且(或不等號全部改變方向)時等號成立.①正確;②,與不一定相等,因此不能得出“歐幾里得距離”這個傳統(tǒng)意義上的勾股定理的形式,不能判斷是直角三角形.②錯誤;③不妨設(shè),,,由得,平方后得,顯然=不一定成立,因此也不一定成立,即不能得出“歐幾里得距離”相等,不一定在線段的垂直平分線上.③錯誤.【點(diǎn)睛】本題考查新運(yùn)算與絕對值的結(jié)合,應(yīng)注意點(diǎn)不同位置,弄清新命題的運(yùn)算規(guī)則,是本題的關(guān)鍵,設(shè)出各點(diǎn)坐標(biāo),代入關(guān)系式計(jì)算,14.已知三條直線l1:2xy+a=0(a>0),直線l2:4x2y1=0和直線l3:x+y1=0,且l1和l2的距離是.(1)求a的值.(2)能否找到一點(diǎn)P,使得P點(diǎn)同時滿足下列三個條件:①P是第一象限的點(diǎn);②P點(diǎn)到l1的距離是P點(diǎn)到l2的距離的;③P點(diǎn)到l1的距離與P點(diǎn)到l3的距離之比是?若能,求出P點(diǎn)坐標(biāo);若不能,請說明理由.【答案】(1)a=3;(2)P().【分析】(1)根據(jù)兩條直線是平行關(guān)系,利用兩條平行線的距離公式即可求得a的值.(2)根據(jù)點(diǎn)到直線的距離公式,討論當(dāng)P點(diǎn)滿足②與③兩種條件下求得參數(shù)的取值,并注意最后結(jié)果的取舍.【詳解】(1)l2的方程即為,∴l(xiāng)1和l2的距離d=,∴.∵a>0,∴a=3.(2)設(shè)點(diǎn)P(x0,y0),若P點(diǎn)滿足條件②,則P點(diǎn)在與l1和l2平行的直線l′:2xy+c=0上,且,即c=或c=.∴2x0y0+或2x0y0+.若點(diǎn)P滿足條件③,由點(diǎn)到直線的距離公式,∴x02y0+4=0或3x0+2=0.由P在第一象限,∴3x0+2=0不合題意.聯(lián)立方程2x0y0+和x02y0+4=0,解得x0=3,y0=,應(yīng)舍去.由2x0y0+與x02y0+4=0聯(lián)立,解得x0=,y0=.所以P()即為同時滿足三個條件的點(diǎn).【點(diǎn)睛】本題考查了直線與直線的平行關(guān)系、平行線間的距離等,關(guān)鍵計(jì)算量比較大,注意不要算錯,15.如圖,的直角邊OA在x軸上,頂點(diǎn)B的坐標(biāo)為,直線CD交AB于點(diǎn),交x軸于點(diǎn).(1)求直線CD的方程;(2)動點(diǎn)P在x軸上從點(diǎn)出發(fā),以每秒1個單位的速度向x軸正方向運(yùn)動,過點(diǎn)P作直線l垂直于x軸,設(shè)運(yùn)動時間為t.①點(diǎn)P在運(yùn)動過程中,是否存在某個位置,使得?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;②請?zhí)剿鳟?dāng)t為何值時,在直線l上存在點(diǎn)M,在直線CD上存在點(diǎn)Q,使得以O(shè)B為一邊,O,B,M,Q為頂點(diǎn)的四邊形為菱形,并求出此時t的值.【答案】(1);(2)①滿足條件的點(diǎn)P坐標(biāo)為或,②滿足條件的t的值為或.【分析】(1)利用兩點(diǎn)式求出直線方程,再化為一般方程;

(2)①根據(jù)題意作DP∥OB,利用相似三角形求出點(diǎn)P的坐標(biāo),根據(jù)對稱性求得P′的坐標(biāo);

②分情況討論,OP=OB=10時,作PQ∥OB交CD于Q,求得點(diǎn)M與點(diǎn)P重合,t=0;

OQ=OB時,求出點(diǎn)Q的橫坐標(biāo),計(jì)算M的橫坐標(biāo),求得t的值;Q點(diǎn)與C點(diǎn)重合時,求得M點(diǎn)的橫坐標(biāo),得出t的值.【詳解】解:(1)直線CD過點(diǎn)C(12,0),D(6,3),直線方程為=,化為一般形式是x+2y﹣12=0;(2)①如圖1中,作DP∥OB,則∠PDA=∠B,由DP∥OB得,=,即=,∴PA=;∴OP=6﹣=,∴點(diǎn)P(,0);根據(jù)對稱性知,當(dāng)AP=AP′時,P′(,0),∴滿足條件的點(diǎn)P坐標(biāo)為(,0)或(,0);②如圖2中,當(dāng)OP=OB=10時,作PQ∥OB交CD于Q,則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論