版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第05講橢圓及其性質(zhì)(模擬精練+真題演練)1.(2023·貴州畢節(jié)·??寄M預(yù)測(cè))已知離心率為SKIPIF1<0的橢圓SKIPIF1<0的方程為SKIPIF1<0,則SKIPIF1<0(
)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.3【答案】C【解析】由題意,SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0.故選:C2.(2023·福建廈門(mén)·統(tǒng)考模擬預(yù)測(cè))比利時(shí)數(shù)學(xué)家旦德林發(fā)現(xiàn):兩個(gè)不相切的球與一個(gè)圓錐面都相切,若一個(gè)平面在圓錐內(nèi)部與兩個(gè)球都相切,則平面與圓錐面的交線是以切點(diǎn)為焦點(diǎn)的橢圓.如圖所示,這個(gè)結(jié)論在圓柱中也適用.用平行光源照射一個(gè)放在桌面上的球,球在桌面上留下的投影區(qū)域內(nèi)(含邊界)有一點(diǎn)SKIPIF1<0,若平行光與桌面夾角為SKIPIF1<0,球的半徑為SKIPIF1<0,則點(diǎn)SKIPIF1<0到球與桌面切點(diǎn)距離的最大值為(
)
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由題意,如圖所示,則SKIPIF1<0,所以SKIPIF1<0到球與桌面切點(diǎn)距離的最大值為:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故選:D3.(2023·青海西寧·統(tǒng)考二模)法國(guó)數(shù)學(xué)家加斯帕·蒙日被稱為“畫(huà)法幾何創(chuàng)始人”“微分幾何之父”.他發(fā)現(xiàn)與橢圓相切的兩條互相垂直的切線的交點(diǎn)的軌跡是以該橢圓中心為圓心的圓,這個(gè)圓被稱為該橢圓的蒙日?qǐng)A.若橢圓:SKIPIF1<0(SKIPIF1<0)的蒙日?qǐng)A為SKIPIF1<0,則橢圓Γ的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】如圖,SKIPIF1<0分別與橢圓相切,顯然SKIPIF1<0.所以點(diǎn)SKIPIF1<0在蒙日?qǐng)ASKIPIF1<0上,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以橢圓SKIPIF1<0的離心率SKIPIF1<0.故選:D4.(2023·廣東韶關(guān)·統(tǒng)考模擬預(yù)測(cè))韶州大橋是一座獨(dú)塔雙索面鋼砼混合梁斜拉橋,具有樁深,塔高、梁重、跨大的特點(diǎn),它打通了曲江區(qū)、湞江區(qū)、武江區(qū)交通道路的瓶頸,成為連接曲江區(qū)與芙蓉新城的重要交通橋梁,大橋承擔(dān)著實(shí)現(xiàn)韶關(guān)“三區(qū)融合”的重要使命,韶州大橋的橋塔外形近似橢圓,若橋塔所在平面截橋面為線段SKIPIF1<0,且SKIPIF1<0過(guò)橢圓的下焦點(diǎn),SKIPIF1<0米,橋塔最高點(diǎn)SKIPIF1<0距橋面SKIPIF1<0米,則此橢圓的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】如圖按橢圓對(duì)稱軸所在直線建立直角坐標(biāo)系,設(shè)橢圓方程為SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,依題意可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:D.5.(2023·陜西西安·西安市第三十八中學(xué)校考模擬預(yù)測(cè))P為橢圓SKIPIF1<0上一點(diǎn),曲線SKIPIF1<0與坐標(biāo)軸的交點(diǎn)為A,B,C,D,若SKIPIF1<0,則P到x軸的距離為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】SKIPIF1<0中,令SKIPIF1<0得SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,不妨設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則A,B為橢圓SKIPIF1<0的焦點(diǎn),則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,由橢圓定義可知,P點(diǎn)在以SKIPIF1<0,SKIPIF1<0為焦點(diǎn)的橢圓上,其中SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,所以P為橢圓SKIPIF1<0上一點(diǎn),由SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,故P到x軸的距離為SKIPIF1<0.故選:D6.(2023·貴州畢節(jié)·??寄M預(yù)測(cè))加斯帕爾-蒙日是1819世紀(jì)法國(guó)著名的幾何學(xué)家.如圖,他在研究圓錐曲線時(shí)發(fā)現(xiàn):橢圓的任意兩條互相垂直的切線的交點(diǎn)都在同一個(gè)圓上,其圓心是橢圓的中心,這個(gè)圓被稱為“蒙日?qǐng)A”.若長(zhǎng)方形SKIPIF1<0的四邊均與橢圓SKIPIF1<0相切,則下列說(shuō)法錯(cuò)誤的是(
)
A.橢圓SKIPIF1<0的離心率為SKIPIF1<0 B.橢圓SKIPIF1<0的蒙日?qǐng)A方程為SKIPIF1<0C.若SKIPIF1<0為正方形,則SKIPIF1<0的邊長(zhǎng)為SKIPIF1<0 D.長(zhǎng)方形SKIPIF1<0的面積的最大值為18【答案】D【解析】由橢圓方程知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,離心率為SKIPIF1<0,A正確;當(dāng)長(zhǎng)方形SKIPIF1<0的邊與橢圓的軸平行時(shí),長(zhǎng)方形的邊長(zhǎng)分別為SKIPIF1<0和4,其對(duì)角線長(zhǎng)為SKIPIF1<0,因此蒙日?qǐng)A半徑為SKIPIF1<0,圓方程為SKIPIF1<0,B正確;設(shè)矩形的邊長(zhǎng)分別為SKIPIF1<0,因此SKIPIF1<0,即SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),所以長(zhǎng)方形SKIPIF1<0的面積的最大值是20,此時(shí)該長(zhǎng)方形SKIPIF1<0為正方形,邊長(zhǎng)為SKIPIF1<0,C正確,D錯(cuò)誤.故選:D.7.(2023·海南海口·??寄M預(yù)測(cè))已知SKIPIF1<0、SKIPIF1<0是橢圓SKIPIF1<0的左右焦點(diǎn),點(diǎn)SKIPIF1<0為SKIPIF1<0上一動(dòng)點(diǎn),且SKIPIF1<0,若SKIPIF1<0為SKIPIF1<0的內(nèi)心,則SKIPIF1<0面積的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由橢圓的方程可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)內(nèi)切圓的半徑為SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故選:C.8.(2023·廣東廣州·廣州市從化區(qū)從化中學(xué)??寄M預(yù)測(cè))已知橢圓SKIPIF1<0的左?右焦點(diǎn)分別為SKIPIF1<0.若點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0的對(duì)稱點(diǎn)SKIPIF1<0恰好在SKIPIF1<0上,且直線SKIPIF1<0與SKIPIF1<0的另一個(gè)交點(diǎn)為SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】設(shè)SKIPIF1<0關(guān)于直線SKIPIF1<0的對(duì)稱點(diǎn)SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0.可知SKIPIF1<0,又知SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0為直角,由題意,點(diǎn)SKIPIF1<0恰好在SKIPIF1<0上,根據(jù)橢圓定義SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,在直角三角形SKIPIF1<0中,SKIPIF1<0,解得SKIPIF1<0,從而SKIPIF1<0,所以SKIPIF1<0.故選:D.9.(多選題)(2023·廣東韶關(guān)·統(tǒng)考模擬預(yù)測(cè))曲線C的方程為SKIPIF1<0,則(
)A.當(dāng)SKIPIF1<0時(shí),曲線C是焦距為SKIPIF1<0的雙曲線B.當(dāng)SKIPIF1<0時(shí),曲線C是焦距為SKIPIF1<0的雙曲線C.曲線C不可能為圓D.當(dāng)SKIPIF1<0時(shí),曲線C是焦距為SKIPIF1<0的橢圓【答案】AD【解析】對(duì)于A,當(dāng)SKIPIF1<0時(shí),方程SKIPIF1<0化為SKIPIF1<0,曲線SKIPIF1<0是焦距為SKIPIF1<0的雙曲線,A正確;對(duì)于B,當(dāng)SKIPIF1<0時(shí),方程SKIPIF1<0化為SKIPIF1<0,曲線SKIPIF1<0是焦點(diǎn)在y軸上,焦距為SKIPIF1<0的橢圓,B錯(cuò)誤;對(duì)于C,當(dāng)SKIPIF1<0時(shí),曲線SKIPIF1<0表示圓SKIPIF1<0,C錯(cuò)誤;對(duì)于D,當(dāng)SKIPIF1<0時(shí),方程SKIPIF1<0化為SKIPIF1<0,曲線SKIPIF1<0是焦點(diǎn)在x軸上,焦距為SKIPIF1<0的橢圓,D正確.故選:AD10.(多選題)(2023·云南·校聯(lián)考二模)已知橢圓SKIPIF1<0,SKIPIF1<0為C的左、右焦點(diǎn),P為C上一點(diǎn),且SKIPIF1<0,若SKIPIF1<0交C點(diǎn)于點(diǎn)Q,則(
)A.SKIPIF1<0周長(zhǎng)為8 B.SKIPIF1<0C.SKIPIF1<0面積為SKIPIF1<0 D.SKIPIF1<0【答案】AD【解析】由題意,在橢圓SKIPIF1<0中,SKIPIF1<0,不妨設(shè)SKIPIF1<0在SKIPIF1<0軸上方,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故B錯(cuò);SKIPIF1<0的周長(zhǎng)為SKIPIF1<0,A正確;設(shè)SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,D正確;SKIPIF1<0,所以SKIPIF1<0,故C不正確,故選:AD.11.(多選題)(2023·海南海口·海南華僑中學(xué)??级#┮阎獧E圓SKIPIF1<0的上頂點(diǎn)為SKIPIF1<0,兩個(gè)焦點(diǎn)為SKIPIF1<0,離心率為SKIPIF1<0.過(guò)SKIPIF1<0且垂直于SKIPIF1<0的直線與SKIPIF1<0交于SKIPIF1<0兩點(diǎn),若SKIPIF1<0的周長(zhǎng)是26,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.直線SKIPIF1<0的斜率為SKIPIF1<0 D.SKIPIF1<0【答案】ACD【解析】如圖所示:∵橢圓SKIPIF1<0的離心率為SKIPIF1<0,∴不妨設(shè)橢圓SKIPIF1<0.∵SKIPIF1<0的上頂點(diǎn)為SKIPIF1<0,兩個(gè)焦點(diǎn)為SKIPIF1<0,∴SKIPIF1<0為等邊三角形,∵過(guò)SKIPIF1<0且垂直于SKIPIF1<0的直線與SKIPIF1<0交于SKIPIF1<0兩點(diǎn),∴SKIPIF1<0.故C項(xiàng)正確.由等腰三角形的性質(zhì)可得SKIPIF1<0.由橢圓的定義可得SKIPIF1<0的周長(zhǎng)為SKIPIF1<0,∴SKIPIF1<0.故A項(xiàng)正確,B項(xiàng)錯(cuò)誤.對(duì)于D項(xiàng),設(shè)SKIPIF1<0,聯(lián)立SKIPIF1<0,消去y得:SKIPIF1<0,則SKIPIF1<0,由韋達(dá)定理得SKIPIF1<0,所以SKIPIF1<0,故D項(xiàng)正確.故選:ACD12.(多選題)(2023·廣東·校聯(lián)考模擬預(yù)測(cè))已知橢圓SKIPIF1<0的焦點(diǎn)在SKIPIF1<0軸上,且SKIPIF1<0分別為橢圓SKIPIF1<0的左、右焦點(diǎn),SKIPIF1<0為橢圓SKIPIF1<0上一點(diǎn),則下列結(jié)論正確的是(
)A.SKIPIF1<0B.SKIPIF1<0的離心率為SKIPIF1<0C.存在SKIPIF1<0,使得SKIPIF1<0D.SKIPIF1<0面積的最大值為SKIPIF1<0【答案】ACD【解析】A選項(xiàng),橢圓SKIPIF1<0的焦點(diǎn)在SKIPIF1<0軸上,故SKIPIF1<0,解得SKIPIF1<0,A正確;B選項(xiàng),設(shè)SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0的離心率為SKIPIF1<0,B錯(cuò)誤;C選項(xiàng),以SKIPIF1<0為直徑的圓的方程為SKIPIF1<0,與橢圓SKIPIF1<0聯(lián)立得,SKIPIF1<0,整理得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0,滿足要求,故存在SKIPIF1<0,使得SKIPIF1<0,C正確;D選項(xiàng),因?yàn)镾KIPIF1<0,故當(dāng)SKIPIF1<0點(diǎn)位于上頂點(diǎn)或下頂點(diǎn)時(shí),SKIPIF1<0面積取得最大值,故最大面積為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0面積取得最大值,最大值為SKIPIF1<0,D正確.故選:ACD13.(多選題)(2023·湖南岳陽(yáng)·統(tǒng)考三模)已知橢圓C:SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0與橢圓C交于A,B兩點(diǎn)(其中A在B的左側(cè)),記SKIPIF1<0面積為S,則(
)A.SKIPIF1<0 B.SKIPIF1<0時(shí),SKIPIF1<0C.S的最大值為SKIPIF1<0 D.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0【答案】ABD【解析】由題知,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,對(duì)于A,根據(jù)橢圓的定義,SKIPIF1<0,故A正確;對(duì)于B,SKIPIF1<0,故SKIPIF1<0,因?yàn)镾KIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,故B正確;對(duì)于C,因?yàn)镾KIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,即SKIPIF1<0所以,SKIPIF1<0面積為SKIPIF1<0,即SKIPIF1<0的最大值為SKIPIF1<0,故C錯(cuò)誤;對(duì)于D,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,由點(diǎn)SKIPIF1<0在橢圓C得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,整理得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0面積為SKIPIF1<0,故D正確;故選:ABD.14.(多選題)(2023·云南昆明·統(tǒng)考模擬預(yù)測(cè))已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,直線y=m與C交于A,B兩點(diǎn)(A在y軸右側(cè)),O為坐標(biāo)原點(diǎn),則下列說(shuō)法正確的是(
)A.SKIPIF1<0B.當(dāng)SKIPIF1<0時(shí),四邊形ABF1F2為矩形C.若SKIPIF1<0,則SKIPIF1<0D.存在實(shí)數(shù)m使得四邊形ABF1O為平行四邊形【答案】ABD【解析】由橢圓與SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱,可得SKIPIF1<0,故A正確;當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,則四邊形SKIPIF1<0為矩形,故B正確;設(shè)SKIPIF1<0,則SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,聯(lián)立消元得SKIPIF1<0,解得SKIPIF1<0,故C錯(cuò)誤;若四邊形SKIPIF1<0為平行四邊形,則SKIPIF1<0,即SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0即可,代入橢圓方程可得SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),四邊形SKIPIF1<0為平行四邊形,故D正確.故選:ABD.15.(2023·江西鷹潭·統(tǒng)考一模)SKIPIF1<0,SKIPIF1<0是橢圓E:SKIPIF1<0的左,右焦點(diǎn),點(diǎn)M為橢圓E上一點(diǎn),點(diǎn)N在x軸上,滿足SKIPIF1<0,SKIPIF1<0,則橢圓E的離心率為.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0是SKIPIF1<0的角平分線,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,由橢圓定義得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,故答案為:SKIPIF1<016.(2023·海南省直轄縣級(jí)單位·文昌中學(xué)??寄M預(yù)測(cè))已知橢圓SKIPIF1<0的左?右焦點(diǎn)分別為SKIPIF1<0,左頂點(diǎn)為SKIPIF1<0,上頂點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0是橢圓上位于第一象限內(nèi)的點(diǎn),且SKIPIF1<0為坐標(biāo)原點(diǎn),則橢圓的離心率為.【答案】SKIPIF1<0/SKIPIF1<0【解析】設(shè)SKIPIF1<0為半焦距,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故點(diǎn)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<017.(2023·江蘇揚(yáng)州·揚(yáng)州中學(xué)??寄M預(yù)測(cè))已知SKIPIF1<0是橢圓SKIPIF1<0的左,右焦點(diǎn),過(guò)點(diǎn)SKIPIF1<0的直線與橢圓交于A,B兩點(diǎn),設(shè)SKIPIF1<0的內(nèi)切圓圓心為SKIPIF1<0,則SKIPIF1<0的最大值為.【答案】SKIPIF1<0/SKIPIF1<0【解析】因?yàn)镾KIPIF1<0為SKIPIF1<0的內(nèi)切圓圓心,則SKIPIF1<0,顯然SKIPIF1<0是銳角,當(dāng)且僅當(dāng)SKIPIF1<0最大時(shí),SKIPIF1<0最大,且SKIPIF1<0最大,又SKIPIF1<0,即有SKIPIF1<0最小,在橢圓SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),因此當(dāng)SKIPIF1<0,即SKIPIF1<0為正三角形時(shí),SKIPIF1<0取得最大值SKIPIF1<0,SKIPIF1<0取最大值SKIPIF1<0,所以SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<018.(2023·海南海口·海南華僑中學(xué)??家荒#┲睆綖?的球放地面上,球上方有一點(diǎn)光源P,則球在地面上的投影為以球與地面的切點(diǎn)F為一個(gè)焦點(diǎn)的橢圓.若橢圓的長(zhǎng)軸為SKIPIF1<0,SKIPIF1<0垂直于地面且與球相切,SKIPIF1<0,則橢圓的離心率為.【答案】SKIPIF1<0【解析】依題意,平面SKIPIF1<0截球O得球面大圓.如圖,SKIPIF1<0是球O大圓的外切三角形,其中SKIPIF1<0,SKIPIF1<0切圓O于點(diǎn)E,F(xiàn),顯然SKIPIF1<0,而SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,由圓的切線性質(zhì)知SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0,于是得橢圓長(zhǎng)軸長(zhǎng)SKIPIF1<0,即SKIPIF1<0.又F為橢圓的一個(gè)焦點(diǎn),令橢圓的半焦距為c,即SKIPIF1<0,因此SKIPIF1<0,所以橢圓的離心率SKIPIF1<0.故答案為:SKIPIF1<019.(2023·江蘇無(wú)錫·江蘇省天一中學(xué)校考模擬預(yù)測(cè))設(shè)SKIPIF1<0內(nèi)接于橢圓SKIPIF1<0,SKIPIF1<0與橢圓的上頂點(diǎn)重合,邊SKIPIF1<0過(guò)SKIPIF1<0的中心SKIPIF1<0,若SKIPIF1<0邊上中線SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0,其中SKIPIF1<0為橢圓SKIPIF1<0的半焦距,則該橢圓的離心率為.【答案】SKIPIF1<0【解析】如圖:邊SKIPIF1<0過(guò)SKIPIF1<0的中心SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0為邊SKIPIF1<0上的中線,SKIPIF1<0邊上中線SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0,所以兩中線的交點(diǎn)為SKIPIF1<0,即SKIPIF1<0為SKIPIF1<0的重心,所以SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.20.(2023·四川綿陽(yáng)·綿陽(yáng)南山中學(xué)實(shí)驗(yàn)學(xué)校校考模擬預(yù)測(cè))設(shè)橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0是橢圓上的一點(diǎn),SKIPIF1<0,原點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0.(1)求橢圓SKIPIF1<0的離心率;(2)平面上點(diǎn)B滿足SKIPIF1<0,過(guò)SKIPIF1<0與SKIPIF1<0平行的直線交SKIPIF1<0于SKIPIF1<0兩點(diǎn),若SKIPIF1<0,求橢圓SKIPIF1<0的方程.【解析】(1)由題設(shè)SKIPIF1<0及SKIPIF1<0,不妨設(shè)SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),從而SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,整理得SKIPIF1<0,原點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,將SKIPIF1<0代入整理得SKIPIF1<0,即SKIPIF1<0,所以離心率SKIPIF1<0.(2)由(1)問(wèn)可設(shè)橢圓方程為SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0為平行四邊形,所以直線SKIPIF1<0過(guò)SKIPIF1<0點(diǎn),則SKIPIF1<0斜率為SKIPIF1<0,則設(shè)直線SKIPIF1<0方程為SKIPIF1<0,聯(lián)立橢圓方程得SKIPIF1<0,顯然SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0(負(fù)值舍去),所以SKIPIF1<0,所以橢圓方程為SKIPIF1<0.1.(2022?甲卷)橢圓SKIPIF1<0的左頂點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0均在SKIPIF1<0上,且關(guān)于SKIPIF1<0軸對(duì)稱.若直線SKIPIF1<0,SKIPIF1<0的斜率之積為SKIPIF1<0,則SKIPIF1<0的離心率為SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】SKIPIF1<0【解析】已知SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0①,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0②,②代入①整理得:SKIPIF1<0,SKIPIF1<0.故選:SKIPIF1<0.2.(2021?新高考Ⅰ)已知SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0的兩個(gè)焦點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上,則SKIPIF1<0的最大值為SKIPIF1<0SKIPIF1<0A.13 B.12 C.9 D.6【答案】SKIPIF1<0【解析】SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0的兩個(gè)焦點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),取等號(hào),所以SKIPIF1<0的最大值為9.故選:SKIPIF1<0.3.(2021?乙卷)設(shè)SKIPIF1<0是橢圓SKIPIF1<0的上頂點(diǎn),若SKIPIF1<0上的任意一點(diǎn)SKIPIF1<0都滿足SKIPIF1<0,則SKIPIF1<0的離心率的取值范圍是SKIPIF1<0SKIPIF1<0A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0 C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】SKIPIF1<0【解析】點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又對(duì)稱軸SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí),則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0最大,此時(shí)SKIPIF1<0,故只需要滿足SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0的范圍為SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí),則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0最大,此時(shí)SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí)等號(hào)成立,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故不滿足題意,綜上所述的SKIPIF1<0的范圍為SKIPIF1<0,SKIPIF1<0,方法二:根據(jù)題意,有SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,也即SKIPIF1<0,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,也即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,也即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,從而可得SKIPIF1<0,SKIPIF1<0,從而離心率的取值范圍為SKIPIF1<0,SKIPIF1<0,故選:SKIPIF1<0.4.(2021?乙卷)設(shè)SKIPIF1<0是橢圓SKIPIF1<0的上頂點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上,則SKIPIF1<0的最大值為SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】SKIPIF1<0【解析】SKIPIF1<0是橢圓SKIPIF1<0的上頂點(diǎn),所以SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0上,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值,最大值為SKIPIF1<0.故選:SKIPIF1<0.5.(2022?新高考Ⅰ)已知橢圓SKIPIF1<0,SKIPIF1<0的上頂點(diǎn)為SKIPIF1<0,兩個(gè)焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,離心率為SKIPIF1<0.過(guò)SKIPIF1<0且垂直于SKIPIF1<0的直線與SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),SKIPIF1<0,則SKIPIF1<0的周長(zhǎng)是.【答案】13.【解析】SKIPIF1<0橢圓SKIPIF1<0的離心率為SKIPIF1<0,SKIPIF1<0不妨可設(shè)橢圓SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的上頂點(diǎn)為SKIPIF1<0,兩個(gè)焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0△SKIPIF1<0為等邊三角形,SKIPIF1<0過(guò)SKIPIF1<0且垂直于SKIPIF1<0的直線與SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),SKIPIF1<0SKIPIF1<0,由等腰三角形的性質(zhì)可得,SKIPIF1<0,SKIPIF1<0,設(shè)直線SKIPIF1<0方程為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,將其與橢圓SKIPIF1<0聯(lián)立化簡(jiǎn)可得,SKIPIF1<0,由韋達(dá)定理可得,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0的周長(zhǎng)等價(jià)于SKIPIF1<0.故答案為:13.6.(2022?新高考Ⅱ)已知直線SKIPIF1<0與橢圓SKIPIF1<0在第一象限交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),SKIPIF1<0與SKIPIF1<0軸、SKIPIF1<0軸分別相交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的方程為.【答案】SKIPIF1<0.【解析】設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,相減可得:SKIPIF1<0,則SKIPIF1<0,設(shè)直線SKIPIF1<0的方程為:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,化為:SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0.SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,故答案為:SKIPIF1<0.7.(2021?甲卷)已知SKIPIF1<0,SKIPIF1<0為橢圓SKIPIF1<0的兩個(gè)焦點(diǎn),SKIPIF1<0,SKIPIF1<0為SKIPIF1<0上關(guān)于坐標(biāo)原點(diǎn)對(duì)稱的兩點(diǎn),且SKIPIF1<0,則四邊形SKIPIF1<0的面積為.【答案】8.【解析】因?yàn)镾KIPIF1<0,SKIPIF1<0為SKIPIF1<0上關(guān)于坐標(biāo)原點(diǎn)對(duì)稱的兩點(diǎn),且SKIPIF1<0,所以四邊形SKIPIF1<0為矩形,設(shè)SKIPIF1<0,SKIPIF1<0,由橢圓的定義可得SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以四邊形SKIPIF1<0的面積為SKIPIF1<0.故答案為:8.8.(2021?浙江)已知橢圓SKIPIF1<0,焦點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.若過(guò)SKIPIF1<0的直線和圓SKIPIF1<0相切,與橢圓的第一象限交于點(diǎn)SKIPIF1<0,且SKIPIF1<0軸,則該直線的斜率是.【答案】SKIPIF1<0.【解析】直線斜率不存在時(shí),直線與圓不相切,不符合題意;由直線過(guò)SKIPIF1<0,設(shè)直線的方程為SKIPIF1<0,SKIPIF1<0直線和圓SKIPIF1<0相切,SKIPIF1<0圓心SKIPIF1<0到直線的距離與半徑相等,SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0,9.(2021?上海)已知橢圓SKIPIF1<0的左、右焦點(diǎn)為SKIPIF1<0、SKIPIF1<0,以SKIPIF1<0為頂點(diǎn),SKIPIF1<0為焦點(diǎn)作拋物線交橢圓于SKIPIF1<0,且SKIPIF1<0,則拋物線的準(zhǔn)線方程是.【答案】SKIPIF1<0.【解析】設(shè)SKIPIF1<0,SKIPIF1<0,則拋物線SKIPIF1<0,直線SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,所以點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0所以SKIPIF1<0,則SKIPIF1<0,所以拋物線的準(zhǔn)線方程為:SKIPIF1<0,故答案為:SKIPIF1<0.10.(2020?上海)已知橢圓SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,直線SKIPIF1<0經(jīng)過(guò)橢圓右焦點(diǎn)SKIPIF1<0,交橢圓SKIPIF1<0于SKIPIF1<0、SKIPIF1<0兩點(diǎn)(點(diǎn)SKIPIF1<0在第二象限),若點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱點(diǎn)為SKIPIF1<0,且滿足SKIPIF1<0,求直線SKIPIF1<0的方程是.【答案】SKIPIF1<0.【解析】橢圓SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,直線SKIPIF1<0經(jīng)過(guò)橢圓右焦點(diǎn)SKIPIF1<0,交橢圓SKIPIF1<0于SKIPIF1<0、SKIPIF1<0兩點(diǎn)(點(diǎn)SKIPIF1<0在第二象限),若點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱點(diǎn)為SKIPIF1<0,且滿足SKIPIF1<0,可知直線SKIPIF1<0的斜率為SKIPIF1<0,所以直線SKIPIF1<0的方程是:SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《柴油機(jī)燃料供給》課件
- 三年級(jí)數(shù)學(xué)下冊(cè)總復(fù)習(xí)課件
- 乙酸的說(shuō)課課件
- 《畜禽免疫學(xué)》課件
- 中醫(yī)診斷學(xué)課件-中醫(yī)診斷學(xué)緒論
- 2024年高考?xì)v史總復(fù)習(xí)考前沖刺攻略 第4講 高考應(yīng)試能力的培養(yǎng)
- 單位管理制度集粹匯編【職工管理】十篇
- 單位管理制度匯編大合集【職工管理】
- 單位管理制度合并匯編職員管理十篇
- 單位管理制度范文大合集人事管理篇十篇
- 東方電影學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 人教版四年級(jí)上冊(cè)數(shù)學(xué)數(shù)學(xué)復(fù)習(xí)資料
- SB/T 10439-2007醬腌菜
- 化糞池計(jì)算表格Excel(自動(dòng)版)
- 2022年人美版美術(shù)六年級(jí)上冊(cè)教案全一冊(cè)
- 超外差調(diào)幅收音機(jī)課設(shè)報(bào)告——內(nèi)蒙古工業(yè)大學(xué)
- 3.2熔化和凝固-人教版八年級(jí)上冊(cè)課件(21張PPT)pptx
- 2017衢州新城吾悅廣場(chǎng)開(kāi)業(yè)安保方案
- 名師工作室考核評(píng)價(jià)表.doc
- 公司宣傳品管理辦法1
- 人教版(PEP)小學(xué)英語(yǔ)六年級(jí)上冊(cè)各單元知識(shí)點(diǎn)歸納(三年級(jí)起點(diǎn))
評(píng)論
0/150
提交評(píng)論