吉林省長春汽車經(jīng)濟技術開發(fā)區(qū)第六中學2025屆高三考前熱身數(shù)學試卷含解析_第1頁
吉林省長春汽車經(jīng)濟技術開發(fā)區(qū)第六中學2025屆高三考前熱身數(shù)學試卷含解析_第2頁
吉林省長春汽車經(jīng)濟技術開發(fā)區(qū)第六中學2025屆高三考前熱身數(shù)學試卷含解析_第3頁
吉林省長春汽車經(jīng)濟技術開發(fā)區(qū)第六中學2025屆高三考前熱身數(shù)學試卷含解析_第4頁
吉林省長春汽車經(jīng)濟技術開發(fā)區(qū)第六中學2025屆高三考前熱身數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

吉林省長春汽車經(jīng)濟技術開發(fā)區(qū)第六中學2025屆高三考前熱身數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓+=1(a>b>0)與直線交于A,B兩點,焦點F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.2.的展開式中的一次項系數(shù)為()A. B. C. D.3.已知為虛數(shù)單位,若復數(shù),,則A. B.C. D.4.已知函數(shù),當時,的取值范圍為,則實數(shù)m的取值范圍是()A. B. C. D.5.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個數(shù)為()A.1 B.2C.3 D.46.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于7.已知冪函數(shù)的圖象過點,且,,,則,,的大小關系為()A. B. C. D.8.設,則關于的方程所表示的曲線是()A.長軸在軸上的橢圓 B.長軸在軸上的橢圓C.實軸在軸上的雙曲線 D.實軸在軸上的雙曲線9.國家統(tǒng)計局服務業(yè)調(diào)查中心和中國物流與采購聯(lián)合會發(fā)布的2018年10月份至2019年9月份共12個月的中國制造業(yè)采購經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯誤的是()A.12個月的PMI值不低于50%的頻率為B.12個月的PMI值的平均值低于50%C.12個月的PMI值的眾數(shù)為49.4%D.12個月的PMI值的中位數(shù)為50.3%10.已知向量,,則向量在向量上的投影是()A. B. C. D.11.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數(shù),那么a+b的值是A. B.C. D.12.若x,y滿足約束條件的取值范圍是A.[0,6] B.[0,4] C.[6, D.[4,二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù)滿足,則的最大值為________.14.(5分)國家禁毒辦于2019年11月5日至12月15日在全國青少年毒品預防教育數(shù)字化網(wǎng)絡平臺上開展2019年全國青少年禁毒知識答題活動,活動期間進入答題專區(qū),點擊“開始答題”按鈕后,系統(tǒng)自動生成20道題.已知某校高二年級有甲、乙、丙、丁、戊五位同學在這次活動中答對的題數(shù)分別是,則這五位同學答對題數(shù)的方差是____________.15.函數(shù)的定義域為,其圖象如圖所示.函數(shù)是定義域為的奇函數(shù),滿足,且當時,.給出下列三個結(jié)論:①;②函數(shù)在內(nèi)有且僅有個零點;③不等式的解集為.其中,正確結(jié)論的序號是________.16.一個空間幾何體的三視圖及部分數(shù)據(jù)如圖所示,則這個幾何體的體積是___________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知曲線的參數(shù)方程為為參數(shù),曲線的參數(shù)方程為為參數(shù)).(1)求與的普通方程;(2)若與相交于,兩點,且,求的值.18.(12分)選修4—5;不等式選講.已知函數(shù).(1)若的解集非空,求實數(shù)的取值范圍;(2)若正數(shù)滿足,為(1)中m可取到的最大值,求證:.19.(12分)若關于的方程的兩根都大于2,求實數(shù)的取值范圍.20.(12分)以平面直角坐標系的原點為極點,軸的正半軸為極軸,且在兩種坐標系中取相同的長度單位,建立極坐標系,已知曲線,曲線(為參數(shù)),求曲線交點的直角坐標.21.(12分)已知函數(shù),其導函數(shù)為,(1)若,求不等式的解集;(2)證明:對任意的,恒有.22.(10分)如圖,在四棱錐中,平面,,為的中點.(1)求證:平面;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

聯(lián)立直線與橢圓方程求出交點A,B兩點,利用平面向量垂直的坐標表示得到關于的關系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設A(0,a),B(-b,0),由題意可知,·=0,因為,,由平面向量垂直的坐標表示可得,,因為,所以a2-c2=ac,兩邊同時除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點睛】本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標表示;考查運算求解能力和知識遷移能力;利用平面向量垂直的坐標表示得到關于的關系式是求解本題的關鍵;屬于中檔題、??碱}型.2、B【解析】

根據(jù)多項式乘法法則得出的一次項系數(shù),然后由等差數(shù)列的前項和公式和組合數(shù)公式得出結(jié)論.【詳解】由題意展開式中的一次項系數(shù)為.故選:B.【點睛】本題考查二項式定理的應用,應用多項式乘法法則可得展開式中某項系數(shù).同時本題考查了組合數(shù)公式.3、B【解析】

由可得,所以,故選B.4、C【解析】

求導分析函數(shù)在時的單調(diào)性、極值,可得時,滿足題意,再在時,求解的x的范圍,綜合可得結(jié)果.【詳解】當時,,令,則;,則,∴函數(shù)在單調(diào)遞增,在單調(diào)遞減.∴函數(shù)在處取得極大值為,∴時,的取值范圍為,∴又當時,令,則,即,∴綜上所述,的取值范圍為.故選C.【點睛】本題考查了利用導數(shù)分析函數(shù)值域的方法,考查了分段函數(shù)的性質(zhì),屬于難題.5、D【解析】可以是共4個,選D.6、D【解析】

試題分析:由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D.考點:平面與平面的位置關系,平面的基本性質(zhì)及其推論.7、A【解析】

根據(jù)題意求得參數(shù),根據(jù)對數(shù)的運算性質(zhì),以及對數(shù)函數(shù)的單調(diào)性即可判斷.【詳解】依題意,得,故,故,,,則.故選:A.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較大小,考查推理論證能力,屬基礎題.8、C【解析】

根據(jù)條件,方程.即,結(jié)合雙曲線的標準方程的特征判斷曲線的類型.【詳解】解:∵k>1,∴1+k>0,k2-1>0,

方程,即,表示實軸在y軸上的雙曲線,

故選C.【點睛】本題考查雙曲線的標準方程的特征,依據(jù)條件把已知的曲線方程化為是關鍵.9、D【解析】

根據(jù)圖形中的信息,可得頻率、平均值的估計、眾數(shù)、中位數(shù),從而得到答案.【詳解】對A,從圖中數(shù)據(jù)變化看,PMI值不低于50%的月份有4個,所以12個月的PMI值不低于50%的頻率為,故A正確;對B,由圖可以看出,PMI值的平均值低于50%,故B正確;對C,12個月的PMI值的眾數(shù)為49.4%,故C正確,;對D,12個月的PMI值的中位數(shù)為49.6%,故D錯誤故選:D.【點睛】本題考查頻率、平均值的估計、眾數(shù)、中位數(shù)計算,考查數(shù)據(jù)處理能力,屬于基礎題.10、A【解析】

先利用向量坐標運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點睛】本題考查了向量加法、減法的坐標運算和向量投影的概念,考查了學生概念理解,數(shù)學運算的能力,屬于中檔題.11、B【解析】

依照偶函數(shù)的定義,對定義域內(nèi)的任意實數(shù),f(﹣x)=f(x),且定義域關于原點對稱,a﹣1=﹣2a,即可得解.【詳解】根據(jù)偶函數(shù)的定義域關于原點對稱,且f(x)是定義在[a–1,2a]上的偶函數(shù),得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.【點睛】本題考查偶函數(shù)的定義,對定義域內(nèi)的任意實數(shù),f(﹣x)=f(x);奇函數(shù)和偶函數(shù)的定義域必然關于原點對稱,定義域區(qū)間兩個端點互為相反數(shù).12、D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標函數(shù)z=x+2y經(jīng)過C點時,函數(shù)取得最小值,由解得C(2,1),目標函數(shù)的最小值為:4目標函數(shù)的范圍是[4,+∞).故選D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

作出不等式組所表示的平面區(qū)域,將目標函數(shù)看作點與可行域的點所構成的直線的斜率,當直線過時,直線的斜率取得最大值,代入點A的坐標可得答案.【詳解】畫出二元一次不等式組所表示的平面區(qū)域,如下圖所示,由得點,目標函數(shù)表示點與可行域的點所構成的直線的斜率,當直線過時,直線的斜率取得最大值,此時的最大值為.故答案為:.【點睛】本題考查求目標函數(shù)的最值,關鍵在于明確目標函數(shù)的幾何意義,屬于中檔題.14、2【解析】

由這五位同學答對的題數(shù)分別是,得該組數(shù)據(jù)的平均數(shù),則方差.15、①③【解析】

利用奇函數(shù)和,得出函數(shù)的周期為,由圖可直接判斷①;利用賦值法求得,結(jié)合,進而可判斷函數(shù)在內(nèi)的零點個數(shù),可判斷②的正誤;采用換元法,結(jié)合圖象即可得解,可判斷③的正誤.綜合可得出結(jié)論.【詳解】因為函數(shù)是奇函數(shù),所以,又,所以,即,所以,函數(shù)的周期為.對于①,由于函數(shù)是上的奇函數(shù),所以,,故①正確;對于②,,令,可得,得,所以,函數(shù)在區(qū)間上的零點為和.因為函數(shù)的周期為,所以函數(shù)在內(nèi)有個零點,分別是、、、、,故②錯誤;對于③,令,則需求的解集,由圖象可知,,所以,故③正確.故答案為:①③.【點睛】本題考查函數(shù)的圖象與性質(zhì),涉及奇偶性、周期性和零點等知識點,考查學生分析問題的能力和數(shù)形結(jié)合能力,屬于中等題.16、【解析】

先還原幾何體,再根據(jù)柱體體積公式求解【詳解】空間幾何體為一個棱柱,如圖,底面為邊長為的直角三角形,高為的棱柱,所以體積為【點睛】本題考查三視圖以及柱體體積公式,考查基本分析求解能力,屬基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)0【解析】

(1)分別把兩曲線參數(shù)方程中的參數(shù)消去,即可得到普通方程;(2)把直線的參數(shù)方程代入的普通方程,化為關于的一元二次方程,再由根與系數(shù)的關系及此時的幾何意義求解.【詳解】(1)由曲線的參數(shù)方程為為參數(shù)),消去參數(shù),可得;由曲線的參數(shù)方程為為參數(shù)),消去參數(shù),可得,即.(2)把為參數(shù))代入,得.,..解得:,即,滿足△..【點睛】本題考查參數(shù)方程化普通方程,特別是直線參數(shù)方程中參數(shù)的幾何意義的應用,是中檔題.18、(1);(2)見解析.【解析】試題分析:(1)討論三種情況去絕對值符號,可得所以,由此得,解得;(2)利用分析法,由(1)知,,所以,因為,要證,只需證,即證,只需證即可得結(jié)果.試題解析:(1)去絕對值符號,可得所以,所以,解得,所以實數(shù)的取值范圍為.(2)由(1)知,,所以.因為,所以要證,只需證,即證,即證.因為,所以只需證,因為,∴成立,所以解法二:x2+y2=2,x、y∈R+,x+y≥2xy設:證明:x+y-2xy==令,∴原式====當時,19、【解析】

先令,根據(jù)題中條件得到,求解,即可得出結(jié)果.【詳解】因為關于的方程的兩根都大于2,令所以有,解得,所以.【點睛】本題主要考查一元二次方程根的分布問題,熟記二次函數(shù)的特征即可,屬于??碱}型.20、【解析】

利用極坐標方程與普通方程、參數(shù)方程間的互化公式化簡即可.【詳解】因為,所以,所以曲線的直角坐標方程為.由,得,所以曲線的普通方程為.由,得,所以(舍),所以,所以曲線的交點坐標為.【點睛】本題考查極坐標方程與普通方程,參數(shù)方程與普通方程間的互化,考查學生的計算能力,是一道容易題.21、(1)(2)證明見解析【解析】

(1)求出的導數(shù),根據(jù)導函數(shù)的性質(zhì)判斷函數(shù)的單調(diào)性,再利用函數(shù)單調(diào)性解函數(shù)型不等式;(2)構造函數(shù),利用導數(shù)判斷在區(qū)間上單調(diào)遞減,結(jié)合可得結(jié)果.【詳解】(1)若,則.設,則,所以在上單調(diào)遞減,在上單調(diào)遞增.又當時,;當時,;當時,,所以所以在上單調(diào)遞增,又,所以不等式的解集為.(2)設,再令,,在上單調(diào)遞減,又,,,,,.即【點睛】本題考查利用函數(shù)的導數(shù)來判斷函數(shù)的單調(diào)性,再利用函數(shù)的單調(diào)性來解決不等式問題,屬于較難題.22、(1)見解析;(2)【解析】

(1)取的中點,連接,根據(jù)中位線的方法證明四邊形是平行四邊形.再證明與從而證明平面,從而得到平面即可.(2)以所在的直線為軸建立空間直角坐標系,再求得平面的法向量與平面的法向量進而求得二面角的余弦值即可.【詳解】(1)證明:如圖,取

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論