新高考數(shù)學(xué)一輪復(fù)習(xí)第3章 第04講 利用導(dǎo)數(shù)研究不等式恒成立問(wèn)題 精講+精練(學(xué)生版)_第1頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)第3章 第04講 利用導(dǎo)數(shù)研究不等式恒成立問(wèn)題 精講+精練(學(xué)生版)_第2頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)第3章 第04講 利用導(dǎo)數(shù)研究不等式恒成立問(wèn)題 精講+精練(學(xué)生版)_第3頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)第3章 第04講 利用導(dǎo)數(shù)研究不等式恒成立問(wèn)題 精講+精練(學(xué)生版)_第4頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)第3章 第04講 利用導(dǎo)數(shù)研究不等式恒成立問(wèn)題 精講+精練(學(xué)生版)_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第04講利用導(dǎo)數(shù)研究不等式恒成立問(wèn)題(精講+精練)目錄第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶第二部分:課前自我評(píng)估測(cè)試第三部分:典型例題剖析高頻考點(diǎn)一:分離變量法高頻考點(diǎn)二:分類討論法高頻考點(diǎn)三:等價(jià)轉(zhuǎn)化法第四部分:高考真題感悟第五部分:第04講利用導(dǎo)數(shù)研究不等式恒成立問(wèn)題(精練)第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶1、分離參數(shù)法用分離參數(shù)法解含參不等式恒成立問(wèn)題,可以根據(jù)不等式的性質(zhì)將參數(shù)分離出來(lái),得到一個(gè)一端是參數(shù),另一端是變量表達(dá)式的不等式;步驟:①分類參數(shù)(注意分類參數(shù)時(shí)自變量SKIPIF1<0的取值范圍是否影響不等式的方向)②轉(zhuǎn)化:若SKIPIF1<0)對(duì)SKIPIF1<0恒成立,則只需SKIPIF1<0;若SKIPIF1<0對(duì)SKIPIF1<0恒成立,則只需SKIPIF1<0.③求最值.2、分類討論法如果無(wú)法分離參數(shù),可以考慮對(duì)參數(shù)或自變量進(jìn)行分類討論求解,如果是二次不等式恒成立的問(wèn)題,可以考慮二次項(xiàng)系數(shù)與判別式的方法(SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0)求解.3、等價(jià)轉(zhuǎn)化法當(dāng)遇到SKIPIF1<0型的不等式恒成立問(wèn)題時(shí),一般采用作差法,構(gòu)造“左減右”的函數(shù)SKIPIF1<0或者“右減左”的函數(shù)SKIPIF1<0,進(jìn)而只需滿足SKIPIF1<0,或者SKIPIF1<0,將比較法的思想融入函數(shù)中,轉(zhuǎn)化為求解函數(shù)的最值的問(wèn)題.第二部分:課前自我評(píng)估測(cè)試第二部分:課前自我評(píng)估測(cè)試1.(2022·全國(guó)·高二)設(shè)SKIPIF1<0為正實(shí)數(shù),函數(shù)SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·全國(guó)·高二)若不等式SKIPIF1<0對(duì)任意實(shí)數(shù)x都成立,則實(shí)數(shù)a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·全國(guó)·高二)已知函數(shù)SKIPIF1<0,對(duì)SKIPIF1<0都有SKIPIF1<0成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0第三部分:典型例題剖析第三部分:典型例題剖析高頻考點(diǎn)一:分離變量法1.(2022·全國(guó)·高三專題練習(xí))設(shè)SKIPIF1<0,若不等式SKIPIF1<0在SKIPIF1<0上恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·內(nèi)蒙古烏蘭察布·高二期末(文))已知函數(shù)SKIPIF1<0,若對(duì)任意兩個(gè)不等的正數(shù)SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0恒成立,則a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2022·全國(guó)·高三專題練習(xí))已知對(duì)SKIPIF1<0,不等式SKIPIF1<0恒成立,則實(shí)數(shù)a的最小值是(

)A.e B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·河南·高二階段練習(xí)(理))已知當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·湖南·臨澧縣第一中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0(SKIPIF1<0為常數(shù))SKIPIF1<01)討論函數(shù)SKIPIF1<0的單調(diào)性;SKIPIF1<02)不等式SKIPIF1<0在SKIPIF1<0上恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.6.(2022·重慶市育才中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0的極值;(2)若函數(shù)SKIPIF1<0在SKIPIF1<0處取得極值,對(duì)SKIPIF1<0,SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.7.(2022·四川省瀘縣第一中學(xué)高二階段練習(xí)(理))已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性與極值;(2)若對(duì)任意SKIPIF1<0,SKIPIF1<0恒成立,求實(shí)數(shù)a的取值范圍.8.(2022·河南·三模(文))已知函數(shù)SKIPIF1<0(e是自然對(duì)數(shù)的底數(shù)),曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線為SKIPIF1<0.(1)求a,b的值;(2)若不等式SKIPIF1<0在SKIPIF1<0上恒成立,求正實(shí)數(shù)m的取值范圍.高頻考點(diǎn)二:分類討論法1.(2022·廣西柳州·三模(文))已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0為函數(shù)SKIPIF1<0的極值點(diǎn),當(dāng)SKIPIF1<0,不等式SKIPIF1<0恒成立,求實(shí)數(shù)m的取值范圍.2.(2022·陜西西安·二模(文))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的單調(diào)減區(qū)間;(2)若不等式SKIPIF1<0對(duì)SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.3.(2022·河南·高二階段練習(xí)(文))已知曲線SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,且SKIPIF1<0.(1)求SKIPIF1<0的解析式;(2)若SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.4.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0,曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線為SKIPIF1<0.(1)證明:對(duì)于SKIPIF1<0,SKIPIF1<0;(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.5.(2022·四川·樹德中學(xué)高三開學(xué)考試(文))已知SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0恒成立,求實(shí)數(shù)a的取值范圍.6.(2022·貴州黔東南·一模(文))已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)當(dāng)x>1時(shí),SKIPIF1<0恒成立,求a的取值范圍.高頻考點(diǎn)三:等價(jià)轉(zhuǎn)化法1.(2022·河南·民權(quán)縣第一高級(jí)中學(xué)高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)討論f(x)的單調(diào)性;(2)當(dāng)a=1時(shí),若不等式SKIPIF1<0恒成立,求m的取值范圍.2.(2022·江蘇·高二課時(shí)練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0對(duì)一切正實(shí)數(shù)SKIPIF1<0都成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.3.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的最小值;(2)當(dāng)SKIPIF1<0時(shí),若對(duì)任意SKIPIF1<0都有SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.4.(2022·江西·南昌市實(shí)驗(yàn)中學(xué)高二階段練習(xí)(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,求實(shí)數(shù)a、b的值;(2)若對(duì)任意SKIPIF1<0,都有SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.5.(2022·山東日照·高三期末)已知函數(shù)SKIPIF1<0,中SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的單調(diào)區(qū)間;(2)若SKIPIF1<0,對(duì)任意實(shí)數(shù)SKIPIF1<0恒成立,求SKIPIF1<0的最大值.高頻考點(diǎn)四:最值法1.(2022·重慶市朝陽(yáng)中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0,其中SKIPIF1<0(1)若函數(shù)SKIPIF1<0的極小值為0,求實(shí)數(shù)m的值;(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,求實(shí)數(shù)m的取值范圍.2.(2022·重慶市長(zhǎng)壽中學(xué)校高二階段練習(xí))已知函數(shù)SKIPIF1<0(1)求SKIPIF1<0的最大值(2)若SKIPIF1<0恒成立,求SKIPIF1<0的值3.(2022·江西·模擬預(yù)測(cè)(文))已知函數(shù)SKIPIF1<0.(1)判斷SKIPIF1<0的單調(diào)性;(2)若對(duì)SKIPIF1<0,不等式SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.4.(2022·河南·高二階段練習(xí)(文))已知函數(shù)SKIPIF1<0在SKIPIF1<0與SKIPIF1<0處都取得極值.(1)求a,b的值;(2)若對(duì)任意SKIPIF1<0,不等式SKIPIF1<0恒成立,求實(shí)數(shù)c的取值范圍.5.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若對(duì)SKIPIF1<0,SKIPIF1<0,不等式SKIPIF1<0恒成立,求實(shí)數(shù)m的取值范圍.6.(2022·全國(guó)·高三專題練習(xí))已知曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程是SKIPIF1<0.(1)求SKIPIF1<0的解析式;(2)若對(duì)任意SKIPIF1<0,都有SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的取值范圍.第四部分:高考真題感悟第四部分:高考真題感悟1.(2019·天津·高考真題(理))已知SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0若關(guān)于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0上恒成立,則SKIPIF1<0的取值范圍為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2020·海南·高考真題)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線與兩坐標(biāo)軸圍成的三角形的面積;(2)若不等式SKIPIF1<0恒成立,求a的取值范圍.3.(2020·全國(guó)·高考真題(理))已知函數(shù)SKIPIF1<0.(1)當(dāng)a=1時(shí),討論f(x)的單調(diào)性;(2)當(dāng)x≥0時(shí),f(x)≥SKIPIF1<0x3+1,求a的取值范圍.4.(2019·全國(guó)·高考真題(文))已知函數(shù)f(x)=2sinx-xcosx-x,f′(x)為f(x)的導(dǎo)數(shù).(1)證明:f′(x)在區(qū)間(0,π)存在唯一零點(diǎn);(2)若x∈[0,π]時(shí),f(x)≥ax,求a的取值范圍.第五部分:第04講利用導(dǎo)數(shù)研究不等式恒成立問(wèn)題(精練)第五部分:第04講利用導(dǎo)數(shù)研究不等式恒成立問(wèn)題(精練)一、單選題1.(2022·河南南陽(yáng)·高二期末(文))若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞增,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·全國(guó)·高二)函數(shù)f(x)=SKIPIF1<0x3-x2+a,函數(shù)g(x)=x2-3x,它們的定義域均為[1,+∞),并且函數(shù)f(x)的圖象始終在函數(shù)g(x)圖象的上方,那么a的取值范圍是(

)A.(0,+∞) B.(-∞,0) C.SKIPIF1<0 D.SKIPIF1<03.(2022·全國(guó)·高三階段練習(xí)(理))已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0恒成立,則a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·全國(guó)·高二)已知函數(shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù),則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·重慶市清華中學(xué)校高二階段練習(xí))已知函數(shù)SKIPIF1<0,若對(duì)任意的SKIPIF1<0,且SKIPIF1<0,都有SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2022·山西臨汾·二模(理))已知函數(shù)SKIPIF1<0,若SKIPIF1<0恒成立.則a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2022·浙江·義烏市商城學(xué)校高二階段練習(xí))已知m,n為實(shí)數(shù),不等式SKIPIF1<0恒成立,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.28.(2022·寧夏中衛(wèi)·一模(理))已知定義域?yàn)镾KIPIF1<0的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,e為自然對(duì)數(shù)的底數(shù),若關(guān)于x的不等式SKIPIF1<0恒成立,則實(shí)數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0二、填空題9.(2022·全國(guó)·高二課時(shí)練習(xí))當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是______.10.(2022·上海交大附中高二階段練習(xí))已知SKIPIF1<0,若對(duì)任意SKIPIF1<0,都有SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是______.11.(2022·江蘇省石莊高級(jí)中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0.若對(duì)任意SKIPIF1<0,都有SKIPIF1<0成立,則實(shí)數(shù)SKIPIF1<0的最小值是________.12.(2022·河南·民權(quán)縣第一高級(jí)中學(xué)高三階段練習(xí)(文))設(shè)函數(shù)f(x)在區(qū)間I上有定義,若對(duì)SKIPIF1<0和SKIPIF1<0,都有SKIPIF1<0,那么稱f(x)為I上的凹函數(shù),若不等號(hào)嚴(yán)格成立,即“<”號(hào)成立,則稱f(x)在I上為嚴(yán)格的凹函數(shù).對(duì)于上述不等式的證明,19世紀(jì)丹麥數(shù)學(xué)家琴生給出了如下的判斷方法:設(shè)定義在(a,b)上的函數(shù)f(x),其一階導(dǎo)數(shù)為SKI

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論