




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆山東省淄博市高三3月份模擬考試數(shù)學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,則=()A. B. C. D.2.若函數(shù)的圖象上兩點,關于直線的對稱點在的圖象上,則的取值范圍是()A. B. C. D.3.定義在上的函數(shù)與其導函數(shù)的圖象如圖所示,設為坐標原點,、、、四點的橫坐標依次為、、、,則函數(shù)的單調遞減區(qū)間是()A. B. C. D.4.集合,,則()A. B. C. D.5.用電腦每次可以從區(qū)間內自動生成一個實數(shù),且每次生成每個實數(shù)都是等可能性的.若用該電腦連續(xù)生成3個實數(shù),則這3個實數(shù)都小于的概率為()A. B. C. D.6.“紋樣”是中國藝術寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內,并向該正方形內隨機投擲200個點,己知恰有80個點落在陰影部分據(jù)此可估計陰影部分的面積是()A. B. C.10 D.7.已知復數(shù)(為虛數(shù)單位),則下列說法正確的是()A.的虛部為 B.復數(shù)在復平面內對應的點位于第三象限C.的共軛復數(shù) D.8.已知,,,則()A. B. C. D.9.為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計學家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時,表示收入完全平等.勞倫茨曲線為折線時,表示收入完全不平等.記區(qū)域為不平等區(qū)域,表示其面積,為的面積,將稱為基尼系數(shù).對于下列說法:①越小,則國民分配越公平;②設勞倫茨曲線對應的函數(shù)為,則對,均有;③若某國家某年的勞倫茨曲線近似為,則;④若某國家某年的勞倫茨曲線近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④10.的展開式中有理項有()A.項 B.項 C.項 D.項11.已知雙曲線的中心在原點且一個焦點為,直線與其相交于,兩點,若中點的橫坐標為,則此雙曲線的方程是A. B.C. D.12.已知,滿足,且的最大值是最小值的4倍,則的值是()A.4 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知內角的對邊分別為外接圓的面積為,則的面積為_________.14.已知復數(shù),其中為虛數(shù)單位,若復數(shù)為純虛數(shù),則實數(shù)的值是__.15.學校藝術節(jié)對同一類的,,,四件參賽作品,只評一件一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:甲說:“或作品獲得一等獎”;乙說:“作品獲得一等獎”;丙說:“,兩項作品未獲得一等獎”;丁說:“作品獲得一等獎”.若這四位同學中有且只有兩位說的話是對的,則獲得一等獎的作品是______.16.將函數(shù)的圖象向左平移個單位長度,得到一個偶函數(shù)圖象,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,空間幾何體中,是邊長為2的等邊三角形,,,,平面平面,且平面平面,為中點.(1)證明:平面;(2)求二面角平面角的余弦值.18.(12分)在直角坐標系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極點,軸的非負半軸為極軸建立極坐標系.(1)求直線和曲線的極坐標方程;(2)已知射線與曲線交于兩點,射線與直線交于點,若的面積為1,求的值和弦長.19.(12分)設數(shù)列,其前項和,又單調遞增的等比數(shù)列,,.(Ⅰ)求數(shù)列,的通項公式;(Ⅱ)若,求數(shù)列的前n項和,并求證:.20.(12分)如圖,三棱錐中,點,分別為,的中點,且平面平面.求證:平面;若,,求證:平面平面.21.(12分)每年的寒冷天氣都會帶熱“御寒經濟”,以交通業(yè)為例,當天氣太冷時,不少人都會選擇利用手機上的打車軟件在網上預約出租車出行,出租車公司的訂單數(shù)就會增加.下表是某出租車公司從出租車的訂單數(shù)據(jù)中抽取的5天的日平均氣溫(單位:℃)與網上預約出租車訂單數(shù)(單位:份);日平均氣溫(℃)642網上預約訂單數(shù)100135150185210(1)經數(shù)據(jù)分析,一天內平均氣溫與該出租車公司網約訂單數(shù)(份)成線性相關關系,試建立關于的回歸方程,并預測日平均氣溫為時,該出租車公司的網約訂單數(shù);(2)天氣預報未來5天有3天日平均氣溫不高于,若把這5天的預測數(shù)據(jù)當成真實的數(shù)據(jù),根據(jù)表格數(shù)據(jù),則從這5天中任意選取2天,求恰有1天網約訂單數(shù)不低于210份的概率.附:回歸直線的斜率和截距的最小二乘法估計分別為:22.(10分)在極坐標系中,曲線的極坐標方程為,直線的極坐標方程為,設與交于、兩點,中點為,的垂直平分線交于、.以為坐標原點,極軸為軸的正半軸建立直角坐標系.(1)求的直角坐標方程與點的直角坐標;(2)求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先求出集合A,B,再求集合B的補集,然后求【詳解】,所以.故選:D【點睛】此題考查的是集合的并集、補集運算,屬于基礎題.2、D【解析】
由題可知,可轉化為曲線與有兩個公共點,可轉化為方程有兩解,構造函數(shù),利用導數(shù)研究函數(shù)單調性,分析即得解【詳解】函數(shù)的圖象上兩點,關于直線的對稱點在上,即曲線與有兩個公共點,即方程有兩解,即有兩解,令,則,則當時,;當時,,故時取得極大值,也即為最大值,當時,;當時,,所以滿足條件.故選:D【點睛】本題考查了利用導數(shù)研究函數(shù)的零點,考查了學生綜合分析,轉化劃歸,數(shù)形結合,數(shù)學運算的能力,屬于較難題.3、B【解析】
先辨別出圖象中實線部分為函數(shù)的圖象,虛線部分為其導函數(shù)的圖象,求出函數(shù)的導數(shù)為,由,得出,只需在圖中找出滿足不等式對應的的取值范圍即可.【詳解】若虛線部分為函數(shù)的圖象,則該函數(shù)只有一個極值點,但其導函數(shù)圖象(實線)與軸有三個交點,不合乎題意;若實線部分為函數(shù)的圖象,則該函數(shù)有兩個極值點,則其導函數(shù)圖象(虛線)與軸恰好也只有兩個交點,合乎題意.對函數(shù)求導得,由得,由圖象可知,滿足不等式的的取值范圍是,因此,函數(shù)的單調遞減區(qū)間為.故選:B.【點睛】本題考查利用圖象求函數(shù)的單調區(qū)間,同時也考查了利用圖象辨別函數(shù)與其導函數(shù)的圖象,考查推理能力,屬于中等題.4、A【解析】
計算,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,屬于簡單題.5、C【解析】
由幾何概型的概率計算,知每次生成一個實數(shù)小于1的概率為,結合獨立事件發(fā)生的概率計算即可.【詳解】∵每次生成一個實數(shù)小于1的概率為.∴這3個實數(shù)都小于1的概率為.故選:C.【點睛】本題考查獨立事件同時發(fā)生的概率,考查學生基本的計算能力,是一道容易題.6、D【解析】
直接根據(jù)幾何概型公式計算得到答案.【詳解】根據(jù)幾何概型:,故.故選:.【點睛】本題考查了根據(jù)幾何概型求面積,意在考查學生的計算能力和應用能力.7、D【解析】
利用的周期性先將復數(shù)化簡為即可得到答案.【詳解】因為,,,所以的周期為4,故,故的虛部為2,A錯誤;在復平面內對應的點為,在第二象限,B錯誤;的共軛復數(shù)為,C錯誤;,D正確.故選:D.【點睛】本題考查復數(shù)的四則運算,涉及到復數(shù)的虛部、共軛復數(shù)、復數(shù)的幾何意義、復數(shù)的模等知識,是一道基礎題.8、B【解析】
利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調性,將數(shù)據(jù)和做對比,即可判斷.【詳解】由于,,故.故選:B.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調性比較大小,屬基礎題.9、A【解析】
對于①,根據(jù)基尼系數(shù)公式,可得基尼系數(shù)越小,不平等區(qū)域的面積越小,國民分配越公平,所以①正確.對于②,根據(jù)勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以②錯誤.對于③,因為,所以,所以③錯誤.對于④,因為,所以,所以④正確.故選A.10、B【解析】
由二項展開式定理求出通項,求出的指數(shù)為整數(shù)時的個數(shù),即可求解.【詳解】,,當,,,時,為有理項,共項.故選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關鍵,屬于基礎題.11、D【解析】
根據(jù)點差法得,再根據(jù)焦點坐標得,解方程組得,,即得結果.【詳解】設雙曲線的方程為,由題意可得,設,,則的中點為,由且,得,,即,聯(lián)立,解得,,故所求雙曲線的方程為.故選D.【點睛】本題主要考查利用點差法求雙曲線標準方程,考查基本求解能力,屬于中檔題.12、D【解析】試題分析:先畫出可行域如圖:由,得,由,得,當直線過點時,目標函數(shù)取得最大值,最大值為3;當直線過點時,目標函數(shù)取得最小值,最小值為3a;由條件得,所以,故選D.考點:線性規(guī)劃.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由外接圓面積,求出外接圓半徑,然后由正弦定理可求得三角形的內角,從而有,于是可得三角形邊長,可得面積.【詳解】設外接圓半徑為,則,由正弦定理,得,∴,,.故答案為:.【點睛】本題考查正弦定理,利用正弦定理求出三角形的內角,然后可得邊長,從而得面積,掌握正弦定理是解題關鍵.14、2【解析】
由題,得,然后根據(jù)純虛數(shù)的定義,即可得到本題答案.【詳解】由題,得,又復數(shù)為純虛數(shù),所以,解得.故答案為:2【點睛】本題主要考查純虛數(shù)定義的應用,屬基礎題.15、B【解析】
首先根據(jù)“學校藝術節(jié)對四件參賽作品只評一件一等獎”,故假設分別為一等獎,然后判斷甲、乙、丙、丁四位同學的說法的正確性,即可得出結果.【詳解】若A為一等獎,則甲、丙、丁的說法均錯誤,不滿足題意;若B為一等獎,則乙、丙的說法正確,甲、丁的說法錯誤,滿足題意;若C為一等獎,則甲、丙、丁的說法均正確,不滿足題意;若D為一等獎,則乙、丙、丁的說法均錯誤,不滿足題意;綜上所述,故B獲得一等獎.【點睛】本題屬于信息題,可根據(jù)題目所給信息來找出解題所需要的條件并得出答案,在做本題的時候,可以采用依次假設為一等獎并通過是否滿足題目條件來判斷其是否正確.16、【解析】
根據(jù)平移后關于軸對稱可知關于對稱,進而利用特殊值構造方程,從而求得結果.【詳解】向左平移個單位長度后得到偶函數(shù)圖象,即關于軸對稱關于對稱即:本題正確結果:【點睛】本題考查根據(jù)三角函數(shù)的對稱軸求解參數(shù)值的問題,關鍵是能夠通過平移后的對稱軸得到原函數(shù)的對稱軸,進而利用特殊值的方式來進行求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)分別取,的中點,,連接,,,,,要證明平面,只需證明面∥面即可.(2)以點為原點,以為軸,以為軸,以為軸,建立空間直角坐標系,分別計算面的法向量,面的法向量可取,并判斷二面角為銳角,再利用計算即可.【詳解】(1)證明:分別取,的中點,,連接,,,,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以∥,又平面,平面,所以∥平面,由,有,∥,又平面,平面,所以∥平面,由∥平面,∥平面,,所以平面∥平面,所以∥平面(2)以點為原點,以為軸,以為軸,以為軸,建立如圖所示空間直角坐標系由面,所以面的法向量可取,點,點,點,,,設面的法向量,所以,取,二面角的平面角為,則為銳角.所以【點睛】本題考查由面面平行證明線面平行以及向量法求二面角的余弦值,考查學生的運算能力,在做此類題時,一定要準確寫出點的坐標.18、(1),;(2).【解析】
(1)先把直線和曲線的參數(shù)方程化成普通方程,再化成極坐標方程;(2)聯(lián)立極坐標方程,根據(jù)極徑的幾何意義可得,再由面積可解得極角,從而可得.【詳解】(1)直線的參數(shù)方程是為參數(shù)),消去參數(shù)得直角坐標方程為:.轉換為極坐標方程為:,即.曲線的參數(shù)方程是(為參數(shù)),轉換為直角坐標方程為:,化為一般式得化為極坐標方程為:.
(2)由于,得,.所以,所以,由于,所以,所以.【點睛】本題主要考查參數(shù)方程與普通方程的互化、直角坐標方程與極坐標方程的互化,熟記公式即可,屬于常考題型.19、(1),;(2)詳見解析.【解析】
(1)當時,,當時,,當時,也滿足,∴,∵等比數(shù)列,∴,∴,又∵,∴或(舍去),∴;(2)由(1)可得:,∴,顯然數(shù)列是遞增數(shù)列,∴,即.)20、證明見解析;證明見解析.【解析】
利用線面平行的判定定理求證即可;為中點,為中點,可得,,,可知,故為直角三角形,,利用面面垂直的判定定理求證即可.【詳解】解:證明:為中點,為中點,,又平面,平面,平面;證明:為中點,為中點,,又,,則,故為直角三角形,,平面平面,平面平面,,平面,平面,又∵平面,平面平面.【點睛】本題考查線面平行和面面垂直的判定定理的應用,屬于基礎題.21
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 化學-云南省師范大學附屬中學2025屆高三下學期開學考試試題和答案
- 2025年贛西科技職業(yè)學院單招職業(yè)適應性測試題庫匯編
- 2025年廣東省安全員C證考試題庫
- 2025屆廣東省惠州市高三上學期三調化學試題及答案
- 辦公室裝修延期索賠起訴書
- 2025年度抵押車輛欠款債權轉讓及車輛抵押權變更協(xié)議書
- 2025年度征收城市經濟適用房房屋拆遷補償合同
- 2025年度體育場地設施維修保養(yǎng)與使用維護協(xié)議
- 2025年貴州電子商務職業(yè)技術學院單招職業(yè)技能測試題庫含答案
- 2025年度五星級酒店廚師團隊聘用協(xié)議
- 2025年中國主題樂園行業(yè)發(fā)展概況、市場全景分析及投資策略研究報告
- 產后疼痛管理指南
- 2025年安徽馬鞍山市兩山綠色生態(tài)環(huán)境建設有限公司招聘筆試參考題庫附帶答案詳解
- 工娛治療及其護理
- 人效管理措施
- 2024-2025學年人教部編版七年級上語文寒假作業(yè)(五)
- 四年級下冊勞動《小小快遞站》課件
- 中國妊娠期糖尿病母兒共同管理指南(2024版)解讀
- 籃球教練職業(yè)生涯規(guī)劃
- 春節(jié)促銷活動方案(7篇)
- 《股市的基礎常識》課件
評論
0/150
提交評論