新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專項(xiàng)重難點(diǎn)突破專題33 圓錐曲線中的探索性問題(解析版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專項(xiàng)重難點(diǎn)突破專題33 圓錐曲線中的探索性問題(解析版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專項(xiàng)重難點(diǎn)突破專題33 圓錐曲線中的探索性問題(解析版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專項(xiàng)重難點(diǎn)突破專題33 圓錐曲線中的探索性問題(解析版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 圓錐曲線專項(xiàng)重難點(diǎn)突破專題33 圓錐曲線中的探索性問題(解析版)_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

專題33圓錐曲線中的探索性問題一、單選題1.已知兩點(diǎn)SKIPIF1<0及直線l:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0,在直線l上存在點(diǎn)P滿足SKIPIF1<0的所有直線方程是(

)A.①② B.①③ C.②③ D.②④【解析】SKIPIF1<0即SKIPIF1<0,故點(diǎn)P滿足的方程為以SKIPIF1<0為焦點(diǎn),SKIPIF1<0的雙曲線的右支,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.其漸近線為SKIPIF1<0,故①SKIPIF1<0不滿足,③SKIPIF1<0滿足;②SKIPIF1<0過SKIPIF1<0,在焦點(diǎn)SKIPIF1<0右側(cè),故滿足;④SKIPIF1<0過SKIPIF1<0,且斜率為SKIPIF1<0,故不滿足.綜上有②③直線與SKIPIF1<0相交,即直線上存在點(diǎn)P滿足SKIPIF1<0.故選:C2.若橢圓SKIPIF1<0上存在點(diǎn)SKIPIF1<0,滿足SKIPIF1<0(SKIPIF1<0為坐標(biāo)原點(diǎn)),則SKIPIF1<0的離心率的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】設(shè)橢圓SKIPIF1<0的長半軸長、短半軸長、半焦距分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由題意知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由橢圓SKIPIF1<0上存在點(diǎn)SKIPIF1<0滿足SKIPIF1<0,等價于以SKIPIF1<0為原點(diǎn),以SKIPIF1<0為半徑的圓與橢圓有交點(diǎn),得SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0的離心率的取值范圍為SKIPIF1<0.故選:D.3.已知雙曲線SKIPIF1<0的左頂點(diǎn)為A,若在雙曲線的右支上存在兩點(diǎn)M,N,使△AMN為等邊三角形,且右焦點(diǎn)為△AMN的重心,則該雙曲線的離心率為(

)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0【解析】設(shè)雙曲線的右焦點(diǎn)為SKIPIF1<0,左焦點(diǎn)為SKIPIF1<0,如圖,連接MF,SKIPIF1<0.由△AMN為等邊三角形,F(xiàn)為△AMN的重心,得SKIPIF1<0.由圖形的對稱性可知,SKIPIF1<0.又因?yàn)椤鰽MF是等腰三角形,所以SKIPIF1<0.在SKIPIF1<0中,由余弦定理得SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0,即SKIPIF1<0,由于SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,故雙曲線的離心率SKIPIF1<0,故選:C.4.已知雙曲線SKIPIF1<0的離心率為3,斜率為SKIPIF1<0的直線SKIPIF1<0分別交F的左右兩支于A,B兩點(diǎn),直線SKIPIF1<0分別交F的左、右兩支于C,D兩點(diǎn),SKIPIF1<0,SKIPIF1<0交SKIPIF1<0于點(diǎn)E,點(diǎn)E恒在直線l上,若直線l的斜率存在,則直線的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】由題得SKIPIF1<0,設(shè)SKIPIF1<0的中點(diǎn)SKIPIF1<0的中點(diǎn)SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0①,同理得SKIPIF1<0②,因?yàn)镾KIPIF1<0,則E,M,N三點(diǎn)共線,所以SKIPIF1<0,將①②代入得SKIPIF1<0,即SKIPIF1<0,因?yàn)橹本€l的斜率存在,所以SKIPIF1<0,所以SKIPIF1<0,即點(diǎn)E在直線SKIPIF1<0上.故選:A.5.已知拋物線SKIPIF1<0:SKIPIF1<0的(SKIPIF1<0)焦點(diǎn)為SKIPIF1<0,準(zhǔn)線為SKIPIF1<0,過SKIPIF1<0的直線SKIPIF1<0交拋物線SKIPIF1<0于SKIPIF1<0,SKIPIF1<0兩點(diǎn),若在直線SKIPIF1<0上存在一點(diǎn)SKIPIF1<0,使SKIPIF1<0是等邊三角形,則直線SKIPIF1<0的斜率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的中點(diǎn)為SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,整理可得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,要使SKIPIF1<0是等邊三角形,則SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,將②式代入①式整理,可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以直線SKIPIF1<0的斜率為SKIPIF1<0,故選:SKIPIF1<0.6.已知橢圓SKIPIF1<0,若橢圓上存在兩點(diǎn)SKIPIF1<0、SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】橢圓SKIPIF1<0,即:SKIPIF1<0,設(shè)橢圓上兩點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,SKIPIF1<0中點(diǎn)為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,代入直線方程SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0在橢圓內(nèi)部,∴SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0的取值范圍是SKIPIF1<0.故選:A.7.已知直線SKIPIF1<0和橢圓SKIPIF1<0若對任意實(shí)數(shù)SKIPIF1<0,直線SKIPIF1<0與橢圓SKIPIF1<0恒有公共點(diǎn),且存在實(shí)數(shù)SKIPIF1<0使得直線SKIPIF1<0與橢圓SKIPIF1<0僅有一個公共點(diǎn),SKIPIF1<0的離心率的取值范圍為SKIPIF1<0,則橢圓SKIPIF1<0的長軸長的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】由題意知直線SKIPIF1<0經(jīng)過定點(diǎn)SKIPIF1<0,對任意實(shí)數(shù)SKIPIF1<0,直線SKIPIF1<0與橢圓SKIPIF1<0恒有公共點(diǎn),且存在實(shí)數(shù)SKIPIF1<0使得直線SKIPIF1<0與橢圓SKIPIF1<0僅有一個公共點(diǎn),則點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0為半焦距SKIPIF1<0,因?yàn)镾KIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0的長軸長的取值范圍是SKIPIF1<0SKIPIF1<0故選:C.8.已知SKIPIF1<0、SKIPIF1<0是雙曲線或橢圓的左、右焦點(diǎn),若橢圓或雙曲線上存在點(diǎn)SKIPIF1<0,使得點(diǎn)SKIPIF1<0,且存在SKIPIF1<0,則稱此橢圓或雙曲線存在“阿圓點(diǎn)”,下列曲線中存在“阿圓點(diǎn)”的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】對于A選項(xiàng),SKIPIF1<0,SKIPIF1<0、SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0到焦點(diǎn)距離的最小值為SKIPIF1<0,最大值為SKIPIF1<0,假設(shè)存在點(diǎn)SKIPIF1<0,滿足SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,不合乎題意,所以A選項(xiàng)中的橢圓不存在“阿圓點(diǎn)”;對于B選項(xiàng),SKIPIF1<0,SKIPIF1<0、SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0到焦點(diǎn)距離的最小值為SKIPIF1<0,最大值為SKIPIF1<0,假設(shè)存在點(diǎn)SKIPIF1<0,滿足SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,不合乎題意,所以B選項(xiàng)中的橢圓不存在“阿圓點(diǎn)”;對于C選項(xiàng),雙曲線的方程為SKIPIF1<0,則雙曲線的兩個焦點(diǎn)為,SKIPIF1<0、SKIPIF1<0,SKIPIF1<0.SKIPIF1<0到焦點(diǎn)距離的最小值為SKIPIF1<0,若雙曲線上存在點(diǎn)SKIPIF1<0,使得點(diǎn)SKIPIF1<0到兩個焦點(diǎn)SKIPIF1<0、SKIPIF1<0的距離之比為SKIPIF1<0,SKIPIF1<0可得SKIPIF1<0所以C選項(xiàng)中的雙曲線存在“阿圓點(diǎn)”;對于D選項(xiàng),雙曲線的標(biāo)準(zhǔn)方程為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0、SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0到焦點(diǎn)距離的最小值為SKIPIF1<0,若雙曲線上存在點(diǎn)SKIPIF1<0,使得點(diǎn)SKIPIF1<0到兩個焦點(diǎn)SKIPIF1<0、SKIPIF1<0的距離之比為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以D選項(xiàng)中的雙曲線不存在“阿圓點(diǎn)”.故選:C.二、多選題9.已知雙曲線SKIPIF1<0:SKIPIF1<0,點(diǎn)SKIPIF1<0為雙曲線右支上的一個動點(diǎn),過點(diǎn)SKIPIF1<0分別作兩條漸近線的垂線,垂足分別為SKIPIF1<0,SKIPIF1<0兩點(diǎn),則下列說法正確的是(

)A.雙曲線的離心率為SKIPIF1<0B.存在點(diǎn)SKIPIF1<0,使得四邊形SKIPIF1<0為正方形C.直線SKIPIF1<0,SKIPIF1<0的斜率之積為2D.存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0【解析】對于A,由雙曲線SKIPIF1<0:SKIPIF1<0,得SKIPIF1<0,故SKIPIF1<0,A正確;對于B,雙曲線SKIPIF1<0:SKIPIF1<0的漸近線為SKIPIF1<0,則四邊形SKIPIF1<0為矩形,又雙曲線右頂點(diǎn)為SKIPIF1<0,SKIPIF1<0到直線SKIPIF1<0的距離均為SKIPIF1<0,故矩形SKIPIF1<0為正方形,即存在點(diǎn)SKIPIF1<0,即M為雙曲線右頂點(diǎn)時,使得四邊形SKIPIF1<0為正方形,B正確;對于C,設(shè)SKIPIF1<0,不妨設(shè)A在第一象限,B在第四象限,由于SKIPIF1<0,故可得SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,同理SKIPIF1<0,可得SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0,C錯誤;對于D,由以上解析可知SKIPIF1<0,同理SKIPIF1<0,故SKIPIF1<0,根據(jù)雙曲線的對稱性,不妨假設(shè)M在第一象限,則SKIPIF1<0,故SKIPIF1<0,令SKIPIF1<0,將SKIPIF1<0代入SKIPIF1<0,即有SKIPIF1<0,顯然不可能,即雙曲線上不存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0,D錯誤,故選:AB10.將曲線SKIPIF1<0和曲線SKIPIF1<0合成曲線SKIPIF1<0.斜率為SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0兩點(diǎn),SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),則(

)A.曲線SKIPIF1<0所圍成圖形的面積小于36B.曲線SKIPIF1<0與其對稱軸僅有兩個交點(diǎn)C.存在SKIPIF1<0,使得點(diǎn)SKIPIF1<0的軌跡總在某個橢圓上D.存在SKIPIF1<0,使得點(diǎn)SKIPIF1<0的軌跡總在某條直線上【解析】過曲線SKIPIF1<0與坐標(biāo)軸的交點(diǎn)作相應(yīng)坐標(biāo)軸的垂線(如圖所示),以四條線的交點(diǎn)為頂點(diǎn)的四邊形為邊長是6的正方形,曲線SKIPIF1<0在該正方形內(nèi),故SKIPIF1<0及其內(nèi)部區(qū)域的面積小于正方形的面積36,故A正確;曲線SKIPIF1<0的對稱軸僅有SKIPIF1<0軸,且SKIPIF1<0與SKIPIF1<0軸僅有2個公共點(diǎn),故B正確;若SKIPIF1<0,此時可設(shè)SKIPIF1<0的方程為SKIPIF1<0,易求SKIPIF1<0的坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0中點(diǎn)坐標(biāo)為SKIPIF1<0,設(shè)SKIPIF1<0,故SKIPIF1<0,消去SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0的軌跡在橢圓SKIPIF1<0上,若SKIPIF1<0,設(shè)SKIPIF1<0的方程為SKIPIF1<0,若SKIPIF1<0均在SKIPIF1<0上,利用點(diǎn)差法,易求SKIPIF1<0,同理若SKIPIF1<0均在SKIPIF1<0上,易求SKIPIF1<0,顯然SKIPIF1<0,故此時點(diǎn)SKIPIF1<0不可能總落在某條直線上,故C正確,D錯誤.故選:ABC.

11.已知拋物線SKIPIF1<0,點(diǎn)SKIPIF1<0均在拋物線SKIPIF1<0上,點(diǎn)SKIPIF1<0,則(

)A.直線SKIPIF1<0的斜率可能為SKIPIF1<0B.線段SKIPIF1<0長度的最小值為SKIPIF1<0C.若SKIPIF1<0三點(diǎn)共線,則存在唯一的點(diǎn)SKIPIF1<0,使得點(diǎn)SKIPIF1<0為線段SKIPIF1<0的中點(diǎn)D.若SKIPIF1<0三點(diǎn)共線,則存在兩個不同的點(diǎn)SKIPIF1<0,使得點(diǎn)SKIPIF1<0為線段SKIPIF1<0的中點(diǎn)【解析】設(shè)SKIPIF1<0在拋物線上,且滿足SKIPIF1<0,對于A,假如直線SKIPIF1<0的斜率可以為SKIPIF1<0,則SKIPIF1<0由于SKIPIF1<0,則該方程無解,所以直線SKIPIF1<0的斜率不可能為SKIPIF1<0,故A錯誤,對于B,SKIPIF1<0,記SKIPIF1<0,記SKIPIF1<0單調(diào)遞增,由于SKIPIF1<0,因此SKIPIF1<0SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,故當(dāng)SKIPIF1<0時,SKIPIF1<0取最小值5,因此SKIPIF1<0的最小值為SKIPIF1<0,故B正確,對于C,若SKIPIF1<0三點(diǎn)共線,SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),則SKIPIF1<0,將SKIPIF1<0代入拋物線方程中得SKIPIF1<0,故SKIPIF1<0有兩個不相等的實(shí)數(shù)根,所以滿足條件的點(diǎn)SKIPIF1<0不唯一,故C錯誤,D正確,故選:BD12.在平面直角坐標(biāo)系SKIPIF1<0中,由直線SKIPIF1<0上任一點(diǎn)SKIPIF1<0向橢圓SKIPIF1<0作切線,切點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0軸的上方,則(

)A.當(dāng)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0時,SKIPIF1<0B.當(dāng)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0時,直線SKIPIF1<0的斜率為SKIPIF1<0C.存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0為鈍角D.存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0【解析】設(shè)點(diǎn)SKIPIF1<0、SKIPIF1<0,先證明出橢圓SKIPIF1<0在其上一點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,由題意可得SKIPIF1<0,聯(lián)立SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0,即方程組SKIPIF1<0只有唯一解,因此,橢圓SKIPIF1<0在其上一點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,同理可知,橢圓SKIPIF1<0在其上一點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0為直線SKIPIF1<0上一點(diǎn),設(shè)點(diǎn)SKIPIF1<0,則有SKIPIF1<0,即SKIPIF1<0,所以,點(diǎn)SKIPIF1<0、SKIPIF1<0的坐標(biāo)滿足方程SKIPIF1<0,所以,直線SKIPIF1<0的方程為SKIPIF1<0,對于A選項(xiàng),當(dāng)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,即SKIPIF1<0,此時直線SKIPIF1<0的方程為SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,即點(diǎn)SKIPIF1<0,此時SKIPIF1<0,A對;對于B選項(xiàng),當(dāng)SKIPIF1<0的坐標(biāo)為SKIPIF1<0時,即SKIPIF1<0時,此時,直線SKIPIF1<0的斜率為SKIPIF1<0,B錯;對于C選項(xiàng),聯(lián)立SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0,由韋達(dá)定理可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,同理SKIPIF1<0,所以,SKIPIF1<0SKIPIF1<0,因此,SKIPIF1<0恒為銳角,C錯;對于D選項(xiàng),若點(diǎn)SKIPIF1<0為橢圓的上頂點(diǎn),則SKIPIF1<0軸,此時SKIPIF1<0,所以,點(diǎn)SKIPIF1<0不是橢圓的上頂點(diǎn),線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0,存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,化簡可得SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,解得SKIPIF1<0,因此,存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0,D對.故選:AD.三、填空題13.已知點(diǎn)SKIPIF1<0,SKIPIF1<0關(guān)于坐標(biāo)原點(diǎn)SKIPIF1<0對稱,SKIPIF1<0,SKIPIF1<0過點(diǎn)SKIPIF1<0,SKIPIF1<0且與直線SKIPIF1<0相切,若存在定點(diǎn)SKIPIF1<0,使得當(dāng)SKIPIF1<0運(yùn)動時,SKIPIF1<0為定值,則點(diǎn)SKIPIF1<0的坐標(biāo)為.【解析】SKIPIF1<0為圓SKIPIF1<0的一條弦,SKIPIF1<0是弦SKIPIF1<0的中點(diǎn),所以圓心SKIPIF1<0在線段SKIPIF1<0的中垂線上,設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0與直線SKIPIF1<0相切,所以SKIPIF1<0的半徑為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,即SKIPIF1<0,化簡得SKIPIF1<0的軌跡方程為SKIPIF1<0.因?yàn)榍€SKIPIF1<0:SKIPIF1<0是以點(diǎn)SKIPIF1<0為焦點(diǎn),以直線SKIPIF1<0為準(zhǔn)線的拋物線,若SKIPIF1<0為焦點(diǎn)SKIPIF1<0,則SKIPIF1<0.因?yàn)镾KIPIF1<0,所以存在滿足條件的定點(diǎn)SKIPIF1<0,其坐標(biāo)為SKIPIF1<0.

14.已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,直線SKIPIF1<0,點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0分別是拋物線SKIPIF1<0、直線SKIPIF1<0上的動點(diǎn),若點(diǎn)SKIPIF1<0在某個位置時,僅存在唯一的點(diǎn)SKIPIF1<0使得SKIPIF1<0,則滿足條件的所有SKIPIF1<0的值為.【解析】設(shè)SKIPIF1<0,SKIPIF1<0,拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,由拋物線定義,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,代入上式可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,①當(dāng)SKIPIF1<0時,可得SKIPIF1<0,解得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,此時方程只有一個解,滿足題意,SKIPIF1<0,②當(dāng)SKIPIF1<0時,由SKIPIF1<0,解得SKIPIF1<0,代入SKIPIF1<0,可得SKIPIF1<0,求得SKIPIF1<0,可得SKIPIF1<0,綜上所述,SKIPIF1<0的值為SKIPIF1<0或SKIPIF1<0.15.不與SKIPIF1<0軸重合的直線SKIPIF1<0經(jīng)過點(diǎn)SKIPIF1<0,雙曲線SKIPIF1<0:SKIPIF1<0上存在兩點(diǎn)A,B關(guān)于SKIPIF1<0對稱,AB中點(diǎn)M的橫坐標(biāo)為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的值為.【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,兩式相減得SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0是AB垂直平分線,有SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,化簡得SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0.16.已知拋物線SKIPIF1<0,SKIPIF1<0為拋物線內(nèi)一點(diǎn),不經(jīng)過P點(diǎn)的直線SKIPIF1<0與拋物線相交于A、B兩點(diǎn),直線AP、BP分別交拋物線于C、D兩點(diǎn),若對任意直線l,總存在SKIPIF1<0,使得SKIPIF1<0,SKIPIF1<0成立,則SKIPIF1<0.【解析】由題意設(shè)SKIPIF1<0,由SKIPIF1<0可得:SKIPIF1<0,可得:SKIPIF1<0,同理可得:SKIPIF1<0,則:SKIPIF1<0(*)且SKIPIF1<0.則SKIPIF1<0.將SKIPIF1<0兩點(diǎn)代入拋物線方程得SKIPIF1<0,作差可得:SKIPIF1<0,而直線SKIPIF1<0與拋物線相交于A、B兩點(diǎn),SKIPIF1<0,即SKIPIF1<0,同理可得,SKIPIF1<0,代入(*),可得SKIPIF1<0,四、解答題17.橢圓SKIPIF1<0的離心率為SKIPIF1<0,過橢圓焦點(diǎn)并且垂直于長軸的弦長度為1.(1)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)若直線SKIPIF1<0與橢圓SKIPIF1<0相交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),與SKIPIF1<0軸相交于SKIPIF1<0點(diǎn),若存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0,求SKIPIF1<0的取值范圍.【解析】(1)因?yàn)樵摍E圓的離心率為SKIPIF1<0,所以有SKIPIF1<0,在方程SKIPIF1<0中,令SKIPIF1<0,解得SKIPIF1<0,因?yàn)檫^橢圓焦點(diǎn)并且垂直于長軸的弦長度為1,所以有SKIPIF1<0,由SKIPIF1<0可得:SKIPIF1<0,所以橢圓的方程為SKIPIF1<0;(2)當(dāng)直線SKIPIF1<0不存在斜率時,由題意可知直線與橢圓有兩個交點(diǎn),與縱軸也有兩個交點(diǎn)不符合題意;當(dāng)直線SKIPIF1<0存在斜率時,設(shè)為SKIPIF1<0,所以直線SKIPIF1<0的方程設(shè)為SKIPIF1<0,于是有SKIPIF1<0,因?yàn)樵撝本€與橢圓有兩個交點(diǎn),所以一定有SKIPIF1<0,化簡,得SKIPIF1<0,設(shè)SKIPIF1<0,于是有SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,代入SKIPIF1<0中,得SKIPIF1<0,于是有SKIPIF1<0,化簡,得SKIPIF1<0,代入SKIPIF1<0中,得SKIPIF1<0.18.已知橢圓SKIPIF1<0:SKIPIF1<0的離心率為SKIPIF1<0,其左、右焦點(diǎn)為SKIPIF1<0、SKIPIF1<0,過SKIPIF1<0作不與SKIPIF1<0軸重合的直線SKIPIF1<0交橢圓SKIPIF1<0于SKIPIF1<0、SKIPIF1<0兩點(diǎn),SKIPIF1<0的周長為8.

(1)求橢圓SKIPIF1<0的方程;(2)設(shè)線段SKIPIF1<0的垂直平分線SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,是否存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0?若存在,求出SKIPIF1<0的值;若不存在,請說明理由.(3)以SKIPIF1<0為圓心4為半徑作圓,過SKIPIF1<0作直線SKIPIF1<0交圓SKIPIF1<0于SKIPIF1<0、SKIPIF1<0兩點(diǎn),求四邊形SKIPIF1<0的面積的最小值及取得最小值時直線SKIPIF1<0的方程.【解析】(1)根據(jù)橢圓定義知SKIPIF1<0周長為SKIPIF1<0,依題意有SKIPIF1<0,從而SKIPIF1<0,故橢圓SKIPIF1<0的方程為SKIPIF1<0;(2)設(shè)SKIPIF1<0:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,因?yàn)镾KIPIF1<0所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,設(shè)線段SKIPIF1<0中點(diǎn)坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即設(shè)線段SKIPIF1<0中點(diǎn)坐標(biāo)為SKIPIF1<0,所以線段SKIPIF1<0的垂直平分線SKIPIF1<0方程為:SKIPIF1<0,令SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0軸重合,不合題意;當(dāng)SKIPIF1<0時,得SKIPIF1<0,即點(diǎn)SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即存在SKIPIF1<0滿足題設(shè);(3)直線SKIPIF1<0:SKIPIF1<0,即SKIPIF1<0,圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,則弦SKIPIF1<0的長:SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,易知SKIPIF1<0在SKIPIF1<0單調(diào)遞增,所以當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,此時直線SKIPIF1<0:SKIPIF1<0.19.已知橢圓SKIPIF1<0的中心為O,左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,M為橢圓C上一點(diǎn),線段SKIPIF1<0與圓SKIPIF1<0相切于該線段的中點(diǎn)N,且SKIPIF1<0的面積為4.(1)求橢圓C的方程;(2)橢圓C上是否存在三個點(diǎn)A,B,P,使得直線AB過橢圓C的左焦點(diǎn)SKIPIF1<0,且四邊形SKIPIF1<0是平行四邊形?若存在,求出直線AB的方程;若不存在.請說明理由.【解析】(1)連接SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0因?yàn)镾KIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,

SKIPIF1<0,解得SKIPIF1<0,由橢圓定義可知,SKIPIF1<0,解得SKIPIF1<0,由勾股定理得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,故橢圓方程為SKIPIF1<0;(2)由題意得SKIPIF1<0,當(dāng)直線SKIPIF1<0的斜率不存在時,即SKIPIF1<0,此時SKIPIF1<0,解得SKIPIF1<0,設(shè)SKIPIF1<0,由于SKIPIF1<0,由對稱性可知,SKIPIF1<0為橢圓左頂點(diǎn)SKIPIF1<0,但SKIPIF1<0,故不合要求,舍去,當(dāng)直線SKIPIF1<0的斜率存在時,設(shè)為SKIPIF1<0,聯(lián)立SKIPIF1<0得,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0中點(diǎn)坐標(biāo)為SKIPIF1<0,假設(shè)存在點(diǎn)P,使得四邊形SKIPIF1<0是平行四邊形,則SKIPIF1<0,將SKIPIF1<0代入橢圓SKIPIF1<0中,得SKIPIF1<0,解得SKIPIF1<0,

此時直線AB的方程為SKIPIF1<0.20.已知SKIPIF1<0為拋物線SKIPIF1<0:SKIPIF1<0的焦點(diǎn),SKIPIF1<0為坐標(biāo)原點(diǎn).過點(diǎn)SKIPIF1<0且斜率為1的直線SKIPIF1<0與拋物線SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0.(1)若點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,求SKIPIF1<0;(2)若SKIPIF1<0的面積為SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的值;(3)是否存在以SKIPIF1<0為圓心、2為半徑的圓,使得過曲線SKIPIF1<0上任意一點(diǎn)SKIPIF1<0作圓SKIPIF1<0的兩條切線,與曲線SKIPIF1<0交于另外兩點(diǎn)SKIPIF1<0,SKIPIF1<0時,總有直線SKIPIF1<0也與圓SKIPIF1<0相切?若存在,求出此時SKIPIF1<0的值;若不存在,請說明理由.【解析】(1)拋物線SKIPIF1<0:SKIPIF1<0的焦點(diǎn)SKIPIF1<0,由點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,則SKIPIF1<0,解得SKIPIF1<0所以SKIPIF1<0(2)設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,原點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0聯(lián)立SKIPIF1<0,設(shè)SKIPIF1<0,整理得SKIPIF1<0,其中SKIPIF1<0,解得SKIPIF1<0由韋達(dá)定理得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,解得SKIPIF1<0(3)設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0則圓SKIPIF1<0的方程為SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0的斜率SKIPIF1<0所以直線SKIPIF1<0的方程為SKIPIF1<0,整理得SKIPIF1<0則直線SKIPIF1<0與圓SKIPIF1<0相切得SKIPIF1<0,即SKIPIF1<0,同理可得SKIPIF1<0,易知SKIPIF1<0,否則直線與拋物線只有一個交點(diǎn),所以SKIPIF1<0是方程SKIPIF1<0的兩個根,由韋達(dá)定理得SKIPIF1<0直線SKIPIF1<0的方程SKIPIF1<0與圓SKIPIF1<0相切得SKIPIF1<0,兩邊平方得SKIPIF1<0,即SKIPIF1<0,化簡得SKIPIF1<0上式對任意的SKIPIF1<0恒成立,所以SKIPIF1<0,解得SKIPIF1<0或3當(dāng)SKIPIF1<0時,SKIPIF1<0,舍去;當(dāng)SKIPIF1<0時,SKIPIF1<0,符合,此時SKIPIF1<0綜上,存在定圓SKIPIF1<0,過曲線SKIPIF1<0上任意一點(diǎn)SKIPIF1<0作圓SKIPIF1<0的兩條切線,與曲線SKIPIF1<0交于另外兩點(diǎn)SKIPIF1<0,SKIPIF1<0時,總有直線SKIPIF1<0也與圓SKIPIF1<0相切.21.已知橢圓SKIPIF1<0的左,右頂點(diǎn)分別為SKIPIF1<0,上,下頂點(diǎn)分別為SKIPIF1<0,四邊形SKIPIF1<0的內(nèi)切圓的面積為SKIPIF1<0,其離心率SKIPIF1<0;拋物線SKIPIF1<0的焦點(diǎn)與橢圓SKIPIF1<0的右焦點(diǎn)重合.斜率為k的直線l過拋物線SKIPIF1<0的焦點(diǎn)且與橢圓SKIPIF1<0交于A,B兩點(diǎn),與拋物線SKIPIF1<0交于C,D兩點(diǎn).(1)求橢圓SKIPIF1<0及拋物線SKIPIF1<0的方程;(2)是否存在常數(shù)SKIPIF1<0,使得SKIPIF1<0為一個與k無關(guān)的常數(shù)?若存在,求出SKIPIF1<0的值;若不存在,請說明理由.【解析】(1)由橢圓SKIPIF1<0可知:SKIPIF1<0,所以直線SKIPIF1<0的方程為:SKIPIF1<0,即SKIPIF1<0,因?yàn)樗倪呅蜸KIPIF1<0的內(nèi)切圓的面積為SKIPIF1<0,所以原點(diǎn)O到直線SKIPIF1<0的距離為SKIPIF1<0,即SKIP

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論