版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
潮州市2023-2024學(xué)年度第一學(xué)期期末高二級教學(xué)質(zhì)量檢測卷數(shù)學(xué)本試卷分選擇題和非選擇題兩部分,共4頁,滿分150分,考試時間120分鐘注意事項(xiàng):1.答卷前,考生務(wù)必用黑色字跡的鋼筆或簽字筆將自己的姓名和考號填寫在答題卡上.2.選擇題每小題選出答案后,用2B鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑;如需改動,用橡皮擦干凈后,再選涂其它答案;不能答在試卷上.3.非選擇題必須用黑色字跡鋼筆或簽字筆作答,答案必須寫在各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用鉛筆和涂改液.不按以上要求作答的答案無效.4.考生必須保持答題卡的整潔,考試結(jié)束,將答題卡交回.一、選擇題(本題共12道小題,其中1至8小題為單項(xiàng)選擇題,9至12小題為多項(xiàng)選擇題)(一)單項(xiàng)選擇題(本題共8道小題,每小題只有一個選項(xiàng)正確,每小題5分,共40分)1.已知橢圓的方程為,則該橢圓的()A.長軸長為2 B.短軸長為 C.焦距為1 D.離心率為2.已知斜率為的直線經(jīng)過點(diǎn),則()A. B. C.1 D.03.兩平行直線,之間的距離是()A. B. C.1 D.54.拋物線上一點(diǎn)到其焦點(diǎn)距離為,則點(diǎn)到坐標(biāo)原點(diǎn)的距離為()A B. C. D.5.正項(xiàng)等比數(shù)列與正項(xiàng)等差數(shù)列,若,則與的關(guān)系是()A. B. C. D.以上都不正確6.雙曲線的漸近線與直線所圍成的三角形面積為2,則該雙曲線的離心率為()A. B. C. D.7.已知點(diǎn)在圓上,點(diǎn),則當(dāng)最小時,()A. B. C. D.48.如圖,在棱長為2的正方體中,點(diǎn)分別在線段和上,則下列結(jié)論中錯誤的結(jié)論()A.的最小值為2B.四面體的體積為C.有且僅有一條直線與垂直D.存在點(diǎn),使為等邊三角形(二)多項(xiàng)選擇題(本題共4小題,每小題5分,共20分,每小題有多個選項(xiàng)正確,每小題全部選對得5分,部分選對得2分,有選錯得0分)9.已知直線,下列結(jié)論正確的是()A.直線在軸上的截距為 B.當(dāng)時,直線的傾斜角為C.當(dāng)時,直線的斜率不存在 D.直線的斜率為10.在空間直角坐標(biāo)系中,向量,則下列結(jié)論正確的是()A.B.若,則C.若,則D.若,則11.如果方程表示焦點(diǎn)在x軸上的橢圓,則實(shí)數(shù)a的取值范圍可以是()A B. C. D.12.在公比為整數(shù)的等比數(shù)列中,是數(shù)列的前項(xiàng)和,若,,則下列說法正確的是()A.數(shù)列是等比數(shù)列 B.C. D.數(shù)列是等差數(shù)列二、填空題:本題共4小題,每小題5分,共20分.13.圓心為且經(jīng)過點(diǎn)的圓的標(biāo)準(zhǔn)方程是________.14.設(shè)等比數(shù)列的前項(xiàng)和為,若,則實(shí)數(shù)________.15.已知為拋物線上的動點(diǎn),為拋物線的焦點(diǎn),,則的最小值為________.16.如圖所示,已知橢圓的方程為,若點(diǎn)為橢圓上的點(diǎn),且,則的面積是______.三、解答題:本題共6小題,第17題10分,其余各題每題12分,共70分;解答應(yīng)寫出文字說明、證明過程或演算步驟.17.已知圓C方程為.(1)求圓C的圓心坐標(biāo)及半徑;(2)求直線被圓C截得的弦長.18.已知等差數(shù)列的前項(xiàng)和為,公比為的等比數(shù)列的前項(xiàng)和為,.(1)若,求數(shù)列通項(xiàng)公式:(2)若,求.19.在空間直角坐標(biāo)系中,是直角三角形,三個頂點(diǎn)的坐標(biāo)分別為,,求實(shí)數(shù)的值.20.數(shù)列的前項(xiàng)和為,且,在等差數(shù)列中,.(1)求數(shù)列和通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.21.如圖所示,在四棱錐中,底面四邊形是菱形,是邊長為2的等邊三角形,為的中點(diǎn),.(1)求證:平面;(2)求直線與平面所成角的大小.22.在平面直角坐標(biāo)系中,已知橢圓的焦點(diǎn)為,且過點(diǎn),橢圓的上、下頂點(diǎn)分別為,右頂點(diǎn)為,直線過點(diǎn)且垂直于軸.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若點(diǎn)在橢圓上(且在第一象限),直線與交于點(diǎn),直線與軸交于點(diǎn),試問:是否為定值?若是,請求出定值;若不是,請說明理由.潮州市2023-2024學(xué)年度第一學(xué)期期末高二級教學(xué)質(zhì)量檢測卷數(shù)學(xué)本試卷分選擇題和非選擇題兩部分,共4頁,滿分150分,考試時間120分鐘注意事項(xiàng):1.答卷前,考生務(wù)必用黑色字跡的鋼筆或簽字筆將自己的姓名和考號填寫在答題卡上.2.選擇題每小題選出答案后,用2B鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑;如需改動,用橡皮擦干凈后,再選涂其它答案;不能答在試卷上.3.非選擇題必須用黑色字跡鋼筆或簽字筆作答,答案必須寫在各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用鉛筆和涂改液.不按以上要求作答的答案無效.4.考生必須保持答題卡的整潔,考試結(jié)束,將答題卡交回.一、選擇題(本題共12道小題,其中1至8小題為單項(xiàng)選擇題,9至12小題為多項(xiàng)選擇題)(一)單項(xiàng)選擇題(本題共8道小題,每小題只有一個選項(xiàng)正確,每小題5分,共40分)1.已知橢圓的方程為,則該橢圓的()A.長軸長為2 B.短軸長為 C.焦距為1 D.離心率為【答案】D【解析】【分析】利用橢圓的標(biāo)準(zhǔn)方程求出即可判斷選項(xiàng)的正誤.【詳解】由橢圓的方程可知:焦點(diǎn)在軸上,即,則.所以長軸長為,短軸長為,焦距為,離心率為.故選:D2.已知斜率為的直線經(jīng)過點(diǎn),則()A. B. C.1 D.0【答案】B【解析】【分析】利用斜率公式即可求解.【詳解】因?yàn)樾甭蕿榈闹本€經(jīng)過點(diǎn),所以,解得.故選:B.3.兩平行直線,之間的距離是()A. B. C.1 D.5【答案】A【解析】【分析】根據(jù)兩直線平行求出,再根據(jù)兩平行直線的距離公式可求出結(jié)果.【詳解】因?yàn)?,所以,解得,所以兩平行直線,之間的距離.故選:A4.拋物線上一點(diǎn)到其焦點(diǎn)的距離為,則點(diǎn)到坐標(biāo)原點(diǎn)的距離為()A. B. C. D.【答案】C【解析】【分析】先由拋物線的方程求出焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,再根據(jù)拋物線的定義求出點(diǎn)的坐標(biāo),最后利用兩點(diǎn)間距離公式即可求解.【詳解】設(shè)點(diǎn).由拋物線可得:焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為.因?yàn)閽佄锞€上一點(diǎn)到其焦點(diǎn)的距離為,所以根據(jù)拋物線的定義可得:,解得:,則.所以點(diǎn)到坐標(biāo)原點(diǎn)的距離為.故選:C.5.正項(xiàng)等比數(shù)列與正項(xiàng)等差數(shù)列,若,則與的關(guān)系是()A. B. C. D.以上都不正確【答案】C【解析】【分析】利用等差數(shù)列通項(xiàng)公式和等比數(shù)列性質(zhì)可將已知等式化為,由此可得結(jié)果.【詳解】設(shè)等差數(shù)列公差為,則,又,,均為正項(xiàng)數(shù)列,.故選:C6.雙曲線的漸近線與直線所圍成的三角形面積為2,則該雙曲線的離心率為()A. B. C. D.【答案】C【解析】【分析】求出雙曲線的漸近線方程,求出交點(diǎn)橫坐標(biāo),然后求解三角形的面積,推出離心率即可.【詳解】雙曲線的漸近線方程為,將代入中,解得,故,故,故雙曲線的離心率.故選:C.7.已知點(diǎn)在圓上,點(diǎn),則當(dāng)最小時,()A. B. C. D.4【答案】B【解析】【分析】求出過的直線方程,再求出圓心到直線的距離,可判斷直線與圓相離,故當(dāng)過的直線與圓相切時,滿足最小求出圓心與點(diǎn)間的距離,再由勾股定理求得.【詳解】,,過,的直線方程為,即,圓的圓心坐標(biāo)為,圓心到直線的距離,如圖,當(dāng)過的直線與圓相切時,滿足最小或最大點(diǎn)位于時最小,位于時最大),此時,,故選:B8.如圖,在棱長為2的正方體中,點(diǎn)分別在線段和上,則下列結(jié)論中錯誤的結(jié)論()A.的最小值為2B.四面體的體積為C.有且僅有一條直線與垂直D.存在點(diǎn),使為等邊三角形【答案】C【解析】【分析】利用異面直線的距離可判定A,利用棱錐的體積公式可判定B,利用特殊位置可排除C,利用坐標(biāo)法可判定D.【詳解】根據(jù)正方體的特征可知面,又面,所以,即是異面直線和的公垂線,當(dāng)分別與重合時,最小值,最小值為2,故A正確;易知,所以,故B正確;易知是等邊三角形,所以當(dāng)是中點(diǎn),而N與重合時,,又由A項(xiàng)可知當(dāng)分別與重合時,,故C錯誤;如圖所示,建立空間直角坐標(biāo)系,則,可設(shè),,若存在點(diǎn),使為等邊三角形,則有,由,由,解方程得,當(dāng)舍去,又因?yàn)樗苑项}意,即D正確.故選:C(二)多項(xiàng)選擇題(本題共4小題,每小題5分,共20分,每小題有多個選項(xiàng)正確,每小題全部選對得5分,部分選對得2分,有選錯得0分)9.已知直線,下列結(jié)論正確的是()A.直線在軸上的截距為 B.當(dāng)時,直線的傾斜角為C.當(dāng)時,直線的斜率不存在 D.直線的斜率為【答案】AC【解析】【分析】利用給定的直線方程,結(jié)合截距、斜率、傾斜角的意義逐項(xiàng)分析判斷即得.【詳解】直線,當(dāng)時,,則直線在軸上的截距為,A正確;當(dāng)時,直線斜率為,傾斜角為,B錯誤;當(dāng)時,直線垂直于x軸,其斜率不存在,C正確,D錯誤.故選:AC10.在空間直角坐標(biāo)系中,向量,則下列結(jié)論正確的是()A.B.若,則C.若,則D.若,則【答案】ABD【解析】【分析】利用向量模長的坐標(biāo)表示可得,可知A正確;由可知,顯然滿足,可得B正確;當(dāng)時代入計(jì)算可得,即C錯誤;代入利用向量數(shù)量積的坐標(biāo)表示可知,可得D正確.【詳解】由可知,即A正確;當(dāng)時,則,滿足,因此,即B正確;當(dāng)時,易知,所以,可知C錯誤;當(dāng)時,可得,滿足,可知,即D正確故選:ABD11.如果方程表示焦點(diǎn)在x軸上的橢圓,則實(shí)數(shù)a的取值范圍可以是()A. B. C. D.【答案】BC【解析】【分析】根據(jù)橢圓方程特征得出關(guān)系式,解不等式即可.
【詳解】焦點(diǎn)在x軸上,則標(biāo)準(zhǔn)方程中,解得或.又,,得,所以或.故選:BC.12.在公比為整數(shù)的等比數(shù)列中,是數(shù)列的前項(xiàng)和,若,,則下列說法正確的是()A.數(shù)列是等比數(shù)列 B.C. D.數(shù)列是等差數(shù)列【答案】BCD【解析】【分析】根據(jù)等比數(shù)列的性質(zhì)得到,即可得到關(guān)于和方程組,結(jié)合條件解得和,從而得到,再逐一分析各個選項(xiàng),即可求解.【詳解】因?yàn)閿?shù)列為等比數(shù)列,則,由,解得:或,則或,又為整數(shù),所以,且,,所以B選項(xiàng)正確;又,所以,則,,,所以C選項(xiàng)正確;因?yàn)?,所以不是等比?shù)列,所以A選項(xiàng)錯誤;又有,所以數(shù)列是公差為1的等差數(shù)列,所以D選項(xiàng)正確;故選:BCD.二、填空題:本題共4小題,每小題5分,共20分.13.圓心為且經(jīng)過點(diǎn)的圓的標(biāo)準(zhǔn)方程是________.【答案】【解析】【分析】先由題意求出圓的半徑,可得圓的標(biāo)準(zhǔn)方程.【詳解】因?yàn)閳A心為且經(jīng)過點(diǎn),所以半徑,于是該圓的標(biāo)準(zhǔn)方程為:.故答案為:.14.設(shè)等比數(shù)列的前項(xiàng)和為,若,則實(shí)數(shù)________.【答案】【解析】【分析】由,分別求出,進(jìn)而利用等比中項(xiàng)即可求解.【詳解】根據(jù)題意,等比數(shù)列中,有,則,,,因?yàn)槭堑缺葦?shù)列,則有,即,解可得.故答案為:.15.已知為拋物線上的動點(diǎn),為拋物線的焦點(diǎn),,則的最小值為________.【答案】5【解析】【分析】根據(jù)拋物線的定義,利用三點(diǎn)共線即可求解.【詳解】拋物線的焦點(diǎn),準(zhǔn)線方程為,如圖所示:設(shè)點(diǎn)M在準(zhǔn)線上的射影為D,由拋物線的定義知,所以使得的最小值,則求的最小值,當(dāng)D,M,P三點(diǎn)共線時,最小,即點(diǎn)到準(zhǔn)線的距離,則最小值為.故答案為:5.16.如圖所示,已知橢圓的方程為,若點(diǎn)為橢圓上的點(diǎn),且,則的面積是______.【答案】【解析】【分析】根據(jù)橢圓的定義、余弦定理等知識求得,從而求得的面積.詳解】由已知,得,則,,在中,由余弦定理,得,所以,由,得,所以,化簡解得,所以的面積為.故答案為:.三、解答題:本題共6小題,第17題10分,其余各題每題12分,共70分;解答應(yīng)寫出文字說明、證明過程或演算步驟.17.已知圓C方程為.(1)求圓C的圓心坐標(biāo)及半徑;(2)求直線被圓C截得的弦長.【答案】(1)圓心坐標(biāo)為,半徑為2;(2).【解析】【分析】(1)寫出圓的標(biāo)準(zhǔn)方程即得解;(2)求出圓心到直線的距離即得直線被圓C截得的弦長.【詳解】(1)由題得圓的方程為,所以圓的圓心坐標(biāo)為,半徑為2.(2)由題得圓心到直線的距離為,所以直線被圓C截得的弦長為.【點(diǎn)睛】結(jié)論點(diǎn)睛:直線被圓所截得到的弦長(其中為圓的半徑,為圓心到直線的距離).18.已知等差數(shù)列的前項(xiàng)和為,公比為的等比數(shù)列的前項(xiàng)和為,.(1)若,求數(shù)列的通項(xiàng)公式:(2)若,求.【答案】(1)(2)【解析】【分析】(1)令公差為,利用等差數(shù)列和等比數(shù)列的通項(xiàng)公式直接求解即可;(2)利用等比數(shù)列通項(xiàng)公式結(jié)合條件得到,即可求得等差數(shù)列的公差,然后直接利用公式求解即可.【小問1詳解】由題知,令公差為,又,且,所以,又,所以,所以或,又,所以,則.【小問2詳解】若,即,所以或,因?yàn)椋?,又,所以,所?19.在空間直角坐標(biāo)系中,是直角三角形,三個頂點(diǎn)的坐標(biāo)分別為,,求實(shí)數(shù)的值.【答案】或或或【解析】【分析】利用空間向量的數(shù)量積為零,依次分析即可.【詳解】由于三個頂點(diǎn)的坐標(biāo)分別為,,,,,當(dāng)時,,即,解得或;當(dāng)時,,即,解得或;當(dāng)時,,即,無解;綜上所述:的值為:或或或.20.數(shù)列的前項(xiàng)和為,且,在等差數(shù)列中,.(1)求數(shù)列和的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.【答案】(1),(2)【解析】【分析】(1)利用與之間的關(guān)系可得數(shù)列的通項(xiàng)公式;利用等差數(shù)列的通項(xiàng)公式列方程組可得數(shù)列的通項(xiàng)公式.(2)利用錯位相減法可求得.小問1詳解】當(dāng)時,,即;當(dāng)時,由得,則兩式相減得,即,,綜上可知,是首項(xiàng),公比的等比數(shù)列,則,即.設(shè)等差數(shù)列的公差為,則,即,解得,所以,即.故,.【小問2詳解】由(1)知,,則①,②,①②得,整理得,即,所以21.如圖所示,在四棱錐中,底面四邊形是菱形,是邊長為2的等邊三角形,為的中點(diǎn),.(1)求證:平面;(2)求直線與平面所成角的大?。敬鸢浮?1.證明見詳解22.【解析】【分析】(1)根據(jù)線面平行的判定定理證明;(2)先證明平面,建立空間直角坐標(biāo)系,利用向量法求解;【小問1詳解】因?yàn)?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度兼職業(yè)務(wù)員線上線下銷售合作合同2篇
- 二零二五年度農(nóng)業(yè)科技示范園農(nóng)民勞務(wù)合作合同
- 二零二五年度智能交通系統(tǒng)股東股權(quán)交易及技術(shù)支持協(xié)議3篇
- 2025年度大型養(yǎng)殖場租賃征收補(bǔ)償協(xié)議書3篇
- 2025農(nóng)村兄弟家庭財產(chǎn)分割與分家協(xié)議書
- 2025年度年度教育機(jī)構(gòu)兼職教師教學(xué)資源共享與保護(hù)條款3篇
- 二零二五年度智能化農(nóng)機(jī)設(shè)備買賣合作協(xié)議3篇
- 二零二五年度農(nóng)村村委會村莊農(nóng)業(yè)產(chǎn)業(yè)結(jié)構(gòu)調(diào)整與改造合同
- 2025年石材加工與安裝一體化服務(wù)合同3篇
- 二零二五年度新能源工廠設(shè)備整體轉(zhuǎn)讓協(xié)議3篇
- 委托招生協(xié)議書范本2025年
- 解剖學(xué)試題與參考答案
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實(shí)踐指導(dǎo)材料之11:“5領(lǐng)導(dǎo)作用-5.5崗位、職責(zé)和權(quán)限”(雷澤佳編制-2025B0)
- 物業(yè)保安培訓(xùn)工作計(jì)劃
- 2024版短視頻IP打造與授權(quán)運(yùn)營合作協(xié)議3篇
- 北京市某中學(xué)2024-2025學(xué)年七年級上學(xué)期期中考試語文試卷
- 2023-2024學(xué)年浙江省寧波市鄞州區(qū)多校統(tǒng)編版六年級上冊期末考試語文試卷
- 2024-2025學(xué)年上學(xué)期深圳初中地理七年級期末模擬卷3
- 云南省昆明市盤龍區(qū)2023-2024學(xué)年三年級上學(xué)期語文期末試卷
- 2024年貴州省六盤水市公開招聘警務(wù)輔助人員(輔警)筆試經(jīng)典練習(xí)卷(B)含答案
- 中國當(dāng)代文學(xué)專題-003-國開機(jī)考復(fù)習(xí)資料
評論
0/150
提交評論