版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2013-2024年十年高考真題匯編PAGEPAGE1專題13立體幾何的空間角與空間距離及其綜合應(yīng)用小題綜合考點(diǎn)十年考情(2015-2024)命題趨勢(shì)考點(diǎn)1異面直線所成角及其應(yīng)用(10年6考)2022·全國(guó)新Ⅰ卷、2021·全國(guó)乙卷、2018·全國(guó)卷2017·全國(guó)卷、2016·全國(guó)卷、2015·浙江卷要熟練掌握幾何法和向量法求解空間角與空間距離,本節(jié)內(nèi)容是新高考卷的??純?nèi)容,要熟練掌握方程思想求值,需強(qiáng)化鞏固復(fù)習(xí).考點(diǎn)2線面角及其應(yīng)用(10年4考)2024·全國(guó)新Ⅱ卷、2023·全國(guó)乙卷、2022·浙江卷2022·全國(guó)甲卷、2022·全國(guó)新Ⅰ卷、2018·浙江卷2018·全國(guó)卷、2018·全國(guó)卷、2018·全國(guó)卷考點(diǎn)3二面角及其應(yīng)用(10年6考)2023·北京卷、2023·全國(guó)乙卷、2023·全國(guó)新Ⅱ卷2022·浙江卷、2019·浙江卷、2018·浙江卷2017·浙江卷、2015·浙江卷考點(diǎn)4點(diǎn)面距及其應(yīng)用(10年1考)2019·全國(guó)卷考點(diǎn)01異面直線所成角及其應(yīng)用1.(2022·全國(guó)新Ⅰ卷·高考真題)(多選)已知正方體,則(
)A.直線與所成的角為 B.直線與所成的角為C.直線與平面所成的角為 D.直線與平面ABCD所成的角為【答案】ABD【分析】數(shù)形結(jié)合,依次對(duì)所給選項(xiàng)進(jìn)行判斷即可.【詳解】如圖,連接、,因?yàn)?,所以直線與所成的角即為直線與所成的角,因?yàn)樗倪呅螢檎叫?,則,故直線與所成的角為,A正確;連接,因?yàn)槠矫妫矫?,則,因?yàn)?,,所以平面,又平面,所以,故B正確;連接,設(shè),連接,因?yàn)槠矫?,平面,則,因?yàn)?,,所以平面,所以為直線與平面所成的角,設(shè)正方體棱長(zhǎng)為,則,,,所以,直線與平面所成的角為,故C錯(cuò)誤;因?yàn)槠矫?,所以為直線與平面所成的角,易得,故D正確.故選:ABD2.(2021·全國(guó)乙卷·高考真題)在正方體中,P為的中點(diǎn),則直線與所成的角為(
)A. B. C. D.【答案】D【分析】平移直線至,將直線與所成的角轉(zhuǎn)化為與所成的角,解三角形即可.【詳解】如圖,連接,因?yàn)椤?,所以或其補(bǔ)角為直線與所成的角,因?yàn)槠矫?,所以,又,,所以平面,所以,設(shè)正方體棱長(zhǎng)為2,則,,所以.故選:D3.(2018·全國(guó)·高考真題)在正方體中,為棱的中點(diǎn),則異面直線與所成角的正切值為A. B. C. D.【答案】C【分析】利用正方體中,,將問(wèn)題轉(zhuǎn)化為求共面直線與所成角的正切值,在中進(jìn)行計(jì)算即可.【詳解】在正方體中,,所以異面直線與所成角為,設(shè)正方體邊長(zhǎng)為,則由為棱的中點(diǎn),可得,所以,則.故選C.
【點(diǎn)睛】求異面直線所成角主要有以下兩種方法:(1)幾何法:①平移兩直線中的一條或兩條,到一個(gè)平面中;②利用邊角關(guān)系,找到(或構(gòu)造)所求角所在的三角形;③求出三邊或三邊比例關(guān)系,用余弦定理求角;(2)向量法:①求兩直線的方向向量;②求兩向量夾角的余弦;③因?yàn)橹本€夾角為銳角,所以②對(duì)應(yīng)的余弦取絕對(duì)值即為直線所成角的余弦值.4.(2017·全國(guó)·高考真題)已知直三棱柱中,,,,則異面直線與所成角的余弦值為A. B. C. D.【答案】C【詳解】如圖所示,補(bǔ)成直四棱柱,則所求角為,易得,因此,故選C.平移法是求異面直線所成角的常用方法,其基本思路是通過(guò)平移直線,把異面問(wèn)題化歸為共面問(wèn)題來(lái)解決,具體步驟如下:①平移:平移異面直線中的一條或兩條,作出異面直線所成的角;②認(rèn)定:證明作出的角就是所求異面直線所成的角;③計(jì)算:求該角的值,常利用解三角形;④取舍:由異面直線所成的角的取值范圍是,當(dāng)所作的角為鈍角時(shí),應(yīng)取它的補(bǔ)角作為兩條異面直線所成的角.求異面直線所成的角要特別注意異面直線之間所成角的范圍.5.(2016·全國(guó)·高考真題)平面過(guò)正方體ABCD—A1B1C1D1的頂點(diǎn)A,,,,則m,n所成角的正弦值為A. B. C. D.【答案】A【詳解】試題分析:如圖,設(shè)平面平面=,平面平面=,因?yàn)槠矫妫?,則所成的角等于所成的角.延長(zhǎng),過(guò)作,連接,則為,同理為,而,則所成的角即為所成的角,即為,故所成角的正弦值為,選A.【點(diǎn)睛】求解本題的關(guān)鍵是作出異面直線所成的角,求異面直線所成角的步驟是:平移定角、連線成形、解形求角、得鈍求補(bǔ).6.(2015·浙江·高考真題)如圖,三棱錐中,,點(diǎn)分別是的中點(diǎn),則異面直線所成的角的余弦值是.
【答案】【詳解】如下圖,連結(jié),取中點(diǎn),連結(jié),,則可知即為異面直線,所成角(或其補(bǔ)角)易得,,,∴,即異面直線,所成角的余弦值為.
考點(diǎn):異面直線的夾角.考點(diǎn)02線面角及其應(yīng)用1.(2024·全國(guó)新Ⅱ卷·高考真題)已知正三棱臺(tái)的體積為,,,則與平面ABC所成角的正切值為(
)A. B.1 C.2 D.3【答案】B【分析】解法一:根據(jù)臺(tái)體的體積公式可得三棱臺(tái)的高,做輔助線,結(jié)合正三棱臺(tái)的結(jié)構(gòu)特征求得,進(jìn)而根據(jù)線面夾角的定義分析求解;解法二:將正三棱臺(tái)補(bǔ)成正三棱錐,與平面ABC所成角即為與平面ABC所成角,根據(jù)比例關(guān)系可得,進(jìn)而可求正三棱錐的高,即可得結(jié)果.【詳解】解法一:分別取的中點(diǎn),則,可知,設(shè)正三棱臺(tái)的為,則,解得,如圖,分別過(guò)作底面垂線,垂足為,設(shè),則,,可得,結(jié)合等腰梯形可得,即,解得,所以與平面ABC所成角的正切值為;解法二:將正三棱臺(tái)補(bǔ)成正三棱錐,則與平面ABC所成角即為與平面ABC所成角,因?yàn)椋瑒t,可知,則,設(shè)正三棱錐的高為,則,解得,取底面ABC的中心為,則底面ABC,且,所以與平面ABC所成角的正切值.故選:B.2.(2023·全國(guó)乙卷·高考真題)已知為等腰直角三角形,AB為斜邊,為等邊三角形,若二面角為,則直線CD與平面ABC所成角的正切值為(
)A. B. C. D.【答案】C【分析】根據(jù)給定條件,推導(dǎo)確定線面角,再利用余弦定理、正弦定理求解作答.【詳解】取的中點(diǎn),連接,因?yàn)槭堑妊苯侨切?,且為斜邊,則有,又是等邊三角形,則,從而為二面角的平面角,即,
顯然平面,于是平面,又平面,因此平面平面,顯然平面平面,直線平面,則直線在平面內(nèi)的射影為直線,從而為直線與平面所成的角,令,則,在中,由余弦定理得:,由正弦定理得,即,顯然是銳角,,所以直線與平面所成的角的正切為.故選:C3.(2022·浙江·高考真題)如圖,已知正三棱柱,E,F(xiàn)分別是棱上的點(diǎn).記與所成的角為,與平面所成的角為,二面角的平面角為,則(
)A. B. C. D.【答案】A【分析】先用幾何法表示出,再根據(jù)邊長(zhǎng)關(guān)系即可比較大?。驹斀狻咳鐖D所示,過(guò)點(diǎn)作于,過(guò)作于,連接,則,,,,,,所以,故選:A.4.(2022·全國(guó)甲卷·高考真題)在長(zhǎng)方體中,已知與平面和平面所成的角均為,則(
)A. B.AB與平面所成的角為C. D.與平面所成的角為【答案】D【分析】根據(jù)線面角的定義以及長(zhǎng)方體的結(jié)構(gòu)特征即可求出.【詳解】如圖所示:不妨設(shè),依題以及長(zhǎng)方體的結(jié)構(gòu)特征可知,與平面所成角為,與平面所成角為,所以,即,,解得.對(duì)于A,,,,A錯(cuò)誤;對(duì)于B,過(guò)作于,易知平面,所以與平面所成角為,因?yàn)椋?,B錯(cuò)誤;對(duì)于C,,,,C錯(cuò)誤;對(duì)于D,與平面所成角為,,而,所以.D正確.故選:D.5.(2022·全國(guó)新Ⅰ卷·高考真題)已知正方體,則(
)A.直線與所成的角為 B.直線與所成的角為C.直線與平面所成的角為 D.直線與平面ABCD所成的角為【答案】ABD【分析】數(shù)形結(jié)合,依次對(duì)所給選項(xiàng)進(jìn)行判斷即可.【詳解】如圖,連接、,因?yàn)?,所以直線與所成的角即為直線與所成的角,因?yàn)樗倪呅螢檎叫?,則,故直線與所成的角為,A正確;連接,因?yàn)槠矫妫矫?,則,因?yàn)?,,所以平面,又平面,所以,故B正確;連接,設(shè),連接,因?yàn)槠矫妫矫?,則,因?yàn)椋?,所以平面,所以為直線與平面所成的角,設(shè)正方體棱長(zhǎng)為,則,,,所以,直線與平面所成的角為,故C錯(cuò)誤;因?yàn)槠矫?,所以為直線與平面所成的角,易得,故D正確.故選:ABD6.(2018·浙江·高考真題)已知四棱錐的底面是正方形,側(cè)棱長(zhǎng)均相等,是線段上的點(diǎn)(不含端點(diǎn)),設(shè)與所成的角為,與平面所成的角為,二面角的平面角為,則A. B. C. D.【答案】D【分析】分別作出線線角、線面角以及二面角,再構(gòu)造直角三角形,根據(jù)邊的大小關(guān)系確定角的大小關(guān)系.【詳解】設(shè)為正方形的中心,為中點(diǎn),過(guò)作的平行線,交于,過(guò)作垂直于,連接、、,則垂直于底面,垂直于,因此從而因?yàn)?,所以即,選D.
【點(diǎn)睛】線線角找平行,線面角找垂直,面面角找垂面.7.(2018·全國(guó)·高考真題)已知圓錐的頂點(diǎn)為,母線,所成角的余弦值為,與圓錐底面所成角為45°,若的面積為,則該圓錐的側(cè)面積為.【答案】【分析】先根據(jù)三角形面積公式求出母線長(zhǎng),再根據(jù)母線與底面所成角得底面半徑,最后根據(jù)圓錐側(cè)面積公式求出結(jié)果.【詳解】因?yàn)槟妇€,所成角的余弦值為,所以母線,所成角的正弦值為,因?yàn)榈拿娣e為,設(shè)母線長(zhǎng)為所以,因?yàn)榕c圓錐底面所成角為45°,所以底面半徑為,因此圓錐的側(cè)面積為.【整體點(diǎn)評(píng)】根據(jù)三角形面積公式先求出母線長(zhǎng),再根據(jù)線面角求出底面半徑,最后根據(jù)圓錐側(cè)面積公式求出側(cè)面積,思路直接自然,是該題的最優(yōu)解.8.(2018·全國(guó)·高考真題)在長(zhǎng)方體中,,與平面所成的角為,則該長(zhǎng)方體的體積為A. B. C. D.【答案】C【分析】首先畫(huà)出長(zhǎng)方體,利用題中條件,得到,根據(jù),求得,可以確定,之后利用長(zhǎng)方體的體積公式求出長(zhǎng)方體的體積.【詳解】在長(zhǎng)方體中,連接,
根據(jù)線面角的定義可知,因?yàn)?,所以,從而求得,所以該長(zhǎng)方體的體積為,故選C.【點(diǎn)睛】該題考查的是長(zhǎng)方體的體積的求解問(wèn)題,在解題的過(guò)程中,需要明確長(zhǎng)方體的體積公式為長(zhǎng)寬高的乘積,而題中的條件只有兩個(gè)值,所以利用題中的條件求解另一條邊的長(zhǎng)就顯得尤為重要,此時(shí)就需要明確線面角的定義,從而得到量之間的關(guān)系,從而求得結(jié)果.9.(2018·全國(guó)·高考真題)已知正方體的棱長(zhǎng)為1,每條棱所在直線與平面所成的角都相等,則截此正方體所得截面面積的最大值為A. B. C. D.【答案】A【分析】首先利用正方體的棱是3組每組有互相平行的4條棱,所以與12條棱所成角相等,只需與從同一個(gè)頂點(diǎn)出發(fā)的三條棱所成角相等即可,從而判斷出面的位置,截正方體所得的截面為一個(gè)正六邊形,且邊長(zhǎng)是面的對(duì)角線的一半,應(yīng)用面積公式求得結(jié)果.【詳解】根據(jù)相互平行的直線與平面所成的角是相等的,所以在正方體中,平面與線所成的角是相等的,所以平面與正方體的每條棱所在的直線所成角都是相等的,同理平面也滿足與正方體的每條棱所在的直線所成角都是相等,要求截面面積最大,則截面的位置為夾在兩個(gè)面與中間的,且過(guò)棱的中點(diǎn)的正六邊形,且邊長(zhǎng)為,所以其面積為,故選A.點(diǎn)睛:該題考查的是有關(guān)平面被正方體所截得的截面多邊形的面積問(wèn)題,首要任務(wù)是需要先確定截面的位置,之后需要從題的條件中找尋相關(guān)的字眼,從而得到其為過(guò)六條棱的中點(diǎn)的正六邊形,利用六邊形的面積的求法,應(yīng)用相關(guān)的公式求得結(jié)果.考點(diǎn)03二面角及其應(yīng)用1.(2023·北京·高考真題)坡屋頂是我國(guó)傳統(tǒng)建筑造型之一,蘊(yùn)含著豐富的數(shù)學(xué)元素.安裝燈帶可以勾勒出建筑輪廓,展現(xiàn)造型之美.如圖,某坡屋頂可視為一個(gè)五面體,其中兩個(gè)面是全等的等腰梯形,兩個(gè)面是全等的等腰三角形.若,且等腰梯形所在的平面、等腰三角形所在的平面與平面的夾角的正切值均為,則該五面體的所有棱長(zhǎng)之和為(
)
A. B.C. D.【答案】C【分析】先根據(jù)線面角的定義求得,從而依次求,,,,再把所有棱長(zhǎng)相加即可得解.【詳解】如圖,過(guò)做平面,垂足為,過(guò)分別做,,垂足分別為,,連接,
由題意得等腰梯形所在的面、等腰三角形所在的面與底面夾角分別為和,所以.因?yàn)槠矫?,平面,所以,因?yàn)?,平面,,所以平面,因?yàn)槠矫?,所以?同理:,又,故四邊形是矩形,所以由得,所以,所以,所以在直角三角形中,在直角三角形中,,,又因?yàn)?,所有棱長(zhǎng)之和為.故選:C2.(2023·全國(guó)乙卷·高考真題)已知為等腰直角三角形,AB為斜邊,為等邊三角形,若二面角為,則直線CD與平面ABC所成角的正切值為(
)A. B. C. D.【答案】C【分析】根據(jù)給定條件,推導(dǎo)確定線面角,再利用余弦定理、正弦定理求解作答.【詳解】取的中點(diǎn),連接,因?yàn)槭堑妊苯侨切危覟樾边?,則有,又是等邊三角形,則,從而為二面角的平面角,即,
顯然平面,于是平面,又平面,因此平面平面,顯然平面平面,直線平面,則直線在平面內(nèi)的射影為直線,從而為直線與平面所成的角,令,則,在中,由余弦定理得:,由正弦定理得,即,顯然是銳角,,所以直線與平面所成的角的正切為.故選:C3.(2023·全國(guó)新Ⅱ卷·高考真題)(多選)已知圓錐的頂點(diǎn)為P,底面圓心為O,AB為底面直徑,,,點(diǎn)C在底面圓周上,且二面角為45°,則(
).A.該圓錐的體積為 B.該圓錐的側(cè)面積為C. D.的面積為【答案】AC【分析】根據(jù)圓錐的體積、側(cè)面積判斷A、B選項(xiàng)的正確性,利用二面角的知識(shí)判斷C、D選項(xiàng)的正確性.【詳解】依題意,,,所以,A選項(xiàng),圓錐的體積為,A選項(xiàng)正確;B選項(xiàng),圓錐的側(cè)面積為,B選項(xiàng)錯(cuò)誤;C選項(xiàng),設(shè)是的中點(diǎn),連接,則,所以是二面角的平面角,則,所以,故,則,C選項(xiàng)正確;D選項(xiàng),,所以,D選項(xiàng)錯(cuò)誤.故選:AC.
4.(2022·浙江·高考真題)如圖,已知正三棱柱,E,F(xiàn)分別是棱上的點(diǎn).記與所成的角為,與平面所成的角為,二面角的平面角為,則(
)A. B. C. D.【答案】A【分析】先用幾何法表示出,再根據(jù)邊長(zhǎng)關(guān)系即可比較大小.【詳解】如圖所示,過(guò)點(diǎn)作于,過(guò)作于,連接,則,,,,,,所以,故選:A.5.(2019·浙江·高考真題)設(shè)三棱錐的底面是正三角形,側(cè)棱長(zhǎng)均相等,是棱上的點(diǎn)(不含端點(diǎn)),記直線與直線所成角為,直線與平面所成角為,二面角的平面角為,則A. B.C. D.【答案】B【解析】本題以三棱錐為載體,綜合考查異面直線所成的角、直線與平面所成的角、二面角的概念,以及各種角的計(jì)算.解答的基本方法是通過(guò)明確各種角,應(yīng)用三角函數(shù)知識(shí)求解,而后比較大小.而充分利用圖形特征,則可事倍功半.【詳解】方法1:如圖為中點(diǎn),在底面的投影為,則在底面投影在線段上,過(guò)作垂直,易得,過(guò)作交于,過(guò)作,交于,則,則,即,,即,綜上所述,答案為B.方法2:由最小角定理,記的平面角為(顯然)由最大角定理,故選B.方法3:(特殊位置)取為正四面體,為中點(diǎn),易得,故選B.【點(diǎn)睛】常規(guī)解法下易出現(xiàn)的錯(cuò)誤有,不能正確作圖得出各種角.未能想到利用“特殊位置法”,尋求簡(jiǎn)便解法.6.(2018·浙江·高考真題)已知四棱錐的底面是正方形,側(cè)棱長(zhǎng)均相等,是線段上的點(diǎn)(不含端點(diǎn)),設(shè)與所成的角為,與平面所成的角為,二面角的平面角為,則A. B. C. D.【答案】D【分析】分別作出線線角、線面角以及二面角,再構(gòu)造直角三角形,根據(jù)邊的大小關(guān)系確定角的大小關(guān)系.【詳解】設(shè)為正方形的中心,為中點(diǎn),過(guò)作的平行線,交于,過(guò)作垂直于,連接、、,則垂直于底面,垂直于,因此從而因?yàn)?,所以即,選D.
【點(diǎn)睛】線線角找平行,線面角找垂直,面面角找垂面.7.(2017·浙江·高考真題)如圖,已知正四面體D–ABC(所有棱長(zhǎng)均相等的三棱錐),P,Q,R分別為AB,BC,CA上的點(diǎn),AP=PB,,分別記二面角D–PR–Q,D–PQ–R,D–QR–P的平面角為α,β,γ,則A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α【答案】B【詳解】設(shè)O為三角形ABC中心,則正四面體D–ABC的頂點(diǎn)在底面ABC的投影為O,過(guò)O分別作PR、PQ、RQ的垂線,垂足分別為E、F、G,連結(jié)DE、DF、DG,則有所以只需比較OE、OF、OG的大?。涸诘酌嫒切蜛BC中,建立如圖示的坐標(biāo)系,不妨設(shè),則所以直線RP的方程為,直線PQ的方程為,直線RQ的方程為,由點(diǎn)到直線的距離公式,可求出:所以,所以,有α,β,γ均為銳角,所以α<γ<β.故選:B【點(diǎn)睛】立體幾何是高中數(shù)學(xué)中的重要內(nèi)容,也是高考重點(diǎn)考查的考點(diǎn)與熱點(diǎn).這類問(wèn)題的設(shè)置一般有線面位置關(guān)系的證明與角度距離的計(jì)算等兩類問(wèn)題.解答第一類問(wèn)題時(shí)一般要借助線面平行與垂直的判定定理進(jìn)行;解答第二類問(wèn)題時(shí)先建立空間直角坐標(biāo)系,運(yùn)用空間向量的坐標(biāo)形式及數(shù)量積公式進(jìn)行求解.8.(2015·浙江·高考真題)如圖,已知,是的中點(diǎn),沿直線將折成,所成二面角的平面角為,則A. B. C. D.【答案】B【詳解】設(shè),設(shè),則由題意,在空間圖形中,設(shè),在中,,在空間圖形中,過(guò)作,過(guò)作,垂足分別為,,過(guò)作,連結(jié),∴,則就是二面角的平面角,∴,在中,,,同理,,,故,顯然面,故,在中,,在中,,∵,,∴(當(dāng)時(shí)取等號(hào)),∵,,而在上為遞減函數(shù),∴,故選B.考點(diǎn):立體幾何中的動(dòng)態(tài)問(wèn)題考點(diǎn)04點(diǎn)面距及其應(yīng)用1.(2019·全國(guó)·高考真題)已知∠ACB=90°,P為平面ABC外一點(diǎn),PC=2,點(diǎn)P到∠ACB兩邊AC,BC的距離均為,那么P到平面ABC的距離為.【答案】.【分析】本題考查學(xué)生空間想象能力,合理畫(huà)圖成為關(guān)鍵,準(zhǔn)確找到在底面上的射影,使用線面垂直定理,得到垂直關(guān)系,勾股定理解決.【詳解】作分別垂直于,平面,連,知,,平面,平面,,.,,,為平分線,,又,.【點(diǎn)睛】畫(huà)圖視角選擇不當(dāng),線面垂直定理使用不夠靈活,難以發(fā)現(xiàn)垂直關(guān)系,問(wèn)題即很難解決,將幾何體擺放成正常視角,是立體幾何問(wèn)題解決的有效手段,幾何關(guān)系利于觀察,解題事半功倍.專題13立體幾何的空間角與空間距離及其綜合應(yīng)用小題綜合考點(diǎn)十年考情(2015-2024)命題趨勢(shì)考點(diǎn)1異面直線所成角及其應(yīng)用(10年6考)2022·全國(guó)新Ⅰ卷、2021·全國(guó)乙卷、2018·全國(guó)卷2017·全國(guó)卷、2016·全國(guó)卷、2015·浙江卷要熟練掌握幾何法和向量法求解空間角與空間距離,本節(jié)內(nèi)容是新高考卷的??純?nèi)容,要熟練掌握方程思想求值,需強(qiáng)化鞏固復(fù)習(xí).考點(diǎn)2線面角及其應(yīng)用(10年4考)2024·全國(guó)新Ⅱ卷、2023·全國(guó)乙卷、2022·浙江卷2022·全國(guó)甲卷、2022·全國(guó)新Ⅰ卷、2018·浙江卷2018·全國(guó)卷、2018·全國(guó)卷、2018·全國(guó)卷考點(diǎn)3二面角及其應(yīng)用(10年6考)2023·北京卷、2023·全國(guó)乙卷、2023·全國(guó)新Ⅱ卷2022·浙江卷、2019·浙江卷、2018·浙江卷2017·浙江卷、2015·浙江卷考點(diǎn)4點(diǎn)面距及其應(yīng)用(10年1考)2019·全國(guó)卷考點(diǎn)01異面直線所成角及其應(yīng)用1.(2022·全國(guó)新Ⅰ卷·高考真題)(多選)已知正方體,則(
)A.直線與所成的角為 B.直線與所成的角為C.直線與平面所成的角為 D.直線與平面ABCD所成的角為【答案】ABD【分析】數(shù)形結(jié)合,依次對(duì)所給選項(xiàng)進(jìn)行判斷即可.【詳解】如圖,連接、,因?yàn)?,所以直線與所成的角即為直線與所成的角,因?yàn)樗倪呅螢檎叫危瑒t,故直線與所成的角為,A正確;連接,因?yàn)槠矫?,平面,則,因?yàn)?,,所以平面,又平面,所以,故B正確;連接,設(shè),連接,因?yàn)槠矫?,平面,則,因?yàn)椋?,所以平面,所以為直線與平面所成的角,設(shè)正方體棱長(zhǎng)為,則,,,所以,直線與平面所成的角為,故C錯(cuò)誤;因?yàn)槠矫?,所以為直線與平面所成的角,易得,故D正確.故選:ABD2.(2021·全國(guó)乙卷·高考真題)在正方體中,P為的中點(diǎn),則直線與所成的角為(
)A. B. C. D.【答案】D【分析】平移直線至,將直線與所成的角轉(zhuǎn)化為與所成的角,解三角形即可.【詳解】如圖,連接,因?yàn)椤危曰蚱溲a(bǔ)角為直線與所成的角,因?yàn)槠矫妫?,又,,所以平面,所以,設(shè)正方體棱長(zhǎng)為2,則,,所以.故選:D3.(2018·全國(guó)·高考真題)在正方體中,為棱的中點(diǎn),則異面直線與所成角的正切值為A. B. C. D.【答案】C【分析】利用正方體中,,將問(wèn)題轉(zhuǎn)化為求共面直線與所成角的正切值,在中進(jìn)行計(jì)算即可.【詳解】在正方體中,,所以異面直線與所成角為,設(shè)正方體邊長(zhǎng)為,則由為棱的中點(diǎn),可得,所以,則.故選C.
【點(diǎn)睛】求異面直線所成角主要有以下兩種方法:(1)幾何法:①平移兩直線中的一條或兩條,到一個(gè)平面中;②利用邊角關(guān)系,找到(或構(gòu)造)所求角所在的三角形;③求出三邊或三邊比例關(guān)系,用余弦定理求角;(2)向量法:①求兩直線的方向向量;②求兩向量夾角的余弦;③因?yàn)橹本€夾角為銳角,所以②對(duì)應(yīng)的余弦取絕對(duì)值即為直線所成角的余弦值.4.(2017·全國(guó)·高考真題)已知直三棱柱中,,,,則異面直線與所成角的余弦值為A. B. C. D.【答案】C【詳解】如圖所示,補(bǔ)成直四棱柱,則所求角為,易得,因此,故選C.平移法是求異面直線所成角的常用方法,其基本思路是通過(guò)平移直線,把異面問(wèn)題化歸為共面問(wèn)題來(lái)解決,具體步驟如下:①平移:平移異面直線中的一條或兩條,作出異面直線所成的角;②認(rèn)定:證明作出的角就是所求異面直線所成的角;③計(jì)算:求該角的值,常利用解三角形;④取舍:由異面直線所成的角的取值范圍是,當(dāng)所作的角為鈍角時(shí),應(yīng)取它的補(bǔ)角作為兩條異面直線所成的角.求異面直線所成的角要特別注意異面直線之間所成角的范圍.5.(2016·全國(guó)·高考真題)平面過(guò)正方體ABCD—A1B1C1D1的頂點(diǎn)A,,,,則m,n所成角的正弦值為A. B. C. D.【答案】A【詳解】試題分析:如圖,設(shè)平面平面=,平面平面=,因?yàn)槠矫?,所以,則所成的角等于所成的角.延長(zhǎng),過(guò)作,連接,則為,同理為,而,則所成的角即為所成的角,即為,故所成角的正弦值為,選A.【點(diǎn)睛】求解本題的關(guān)鍵是作出異面直線所成的角,求異面直線所成角的步驟是:平移定角、連線成形、解形求角、得鈍求補(bǔ).6.(2015·浙江·高考真題)如圖,三棱錐中,,點(diǎn)分別是的中點(diǎn),則異面直線所成的角的余弦值是.
【答案】【詳解】如下圖,連結(jié),取中點(diǎn),連結(jié),,則可知即為異面直線,所成角(或其補(bǔ)角)易得,,,∴,即異面直線,所成角的余弦值為.
考點(diǎn):異面直線的夾角.考點(diǎn)02線面角及其應(yīng)用1.(2024·全國(guó)新Ⅱ卷·高考真題)已知正三棱臺(tái)的體積為,,,則與平面ABC所成角的正切值為(
)A. B.1 C.2 D.3【答案】B【分析】解法一:根據(jù)臺(tái)體的體積公式可得三棱臺(tái)的高,做輔助線,結(jié)合正三棱臺(tái)的結(jié)構(gòu)特征求得,進(jìn)而根據(jù)線面夾角的定義分析求解;解法二:將正三棱臺(tái)補(bǔ)成正三棱錐,與平面ABC所成角即為與平面ABC所成角,根據(jù)比例關(guān)系可得,進(jìn)而可求正三棱錐的高,即可得結(jié)果.【詳解】解法一:分別取的中點(diǎn),則,可知,設(shè)正三棱臺(tái)的為,則,解得,如圖,分別過(guò)作底面垂線,垂足為,設(shè),則,,可得,結(jié)合等腰梯形可得,即,解得,所以與平面ABC所成角的正切值為;解法二:將正三棱臺(tái)補(bǔ)成正三棱錐,則與平面ABC所成角即為與平面ABC所成角,因?yàn)?,則,可知,則,設(shè)正三棱錐的高為,則,解得,取底面ABC的中心為,則底面ABC,且,所以與平面ABC所成角的正切值.故選:B.2.(2023·全國(guó)乙卷·高考真題)已知為等腰直角三角形,AB為斜邊,為等邊三角形,若二面角為,則直線CD與平面ABC所成角的正切值為(
)A. B. C. D.【答案】C【分析】根據(jù)給定條件,推導(dǎo)確定線面角,再利用余弦定理、正弦定理求解作答.【詳解】取的中點(diǎn),連接,因?yàn)槭堑妊苯侨切?,且為斜邊,則有,又是等邊三角形,則,從而為二面角的平面角,即,
顯然平面,于是平面,又平面,因此平面平面,顯然平面平面,直線平面,則直線在平面內(nèi)的射影為直線,從而為直線與平面所成的角,令,則,在中,由余弦定理得:,由正弦定理得,即,顯然是銳角,,所以直線與平面所成的角的正切為.故選:C3.(2022·浙江·高考真題)如圖,已知正三棱柱,E,F(xiàn)分別是棱上的點(diǎn).記與所成的角為,與平面所成的角為,二面角的平面角為,則(
)A. B. C. D.【答案】A【分析】先用幾何法表示出,再根據(jù)邊長(zhǎng)關(guān)系即可比較大?。驹斀狻咳鐖D所示,過(guò)點(diǎn)作于,過(guò)作于,連接,則,,,,,,所以,故選:A.4.(2022·全國(guó)甲卷·高考真題)在長(zhǎng)方體中,已知與平面和平面所成的角均為,則(
)A. B.AB與平面所成的角為C. D.與平面所成的角為【答案】D【分析】根據(jù)線面角的定義以及長(zhǎng)方體的結(jié)構(gòu)特征即可求出.【詳解】如圖所示:不妨設(shè),依題以及長(zhǎng)方體的結(jié)構(gòu)特征可知,與平面所成角為,與平面所成角為,所以,即,,解得.對(duì)于A,,,,A錯(cuò)誤;對(duì)于B,過(guò)作于,易知平面,所以與平面所成角為,因?yàn)?,所以,B錯(cuò)誤;對(duì)于C,,,,C錯(cuò)誤;對(duì)于D,與平面所成角為,,而,所以.D正確.故選:D.5.(2022·全國(guó)新Ⅰ卷·高考真題)已知正方體,則(
)A.直線與所成的角為 B.直線與所成的角為C.直線與平面所成的角為 D.直線與平面ABCD所成的角為【答案】ABD【分析】數(shù)形結(jié)合,依次對(duì)所給選項(xiàng)進(jìn)行判斷即可.【詳解】如圖,連接、,因?yàn)椋灾本€與所成的角即為直線與所成的角,因?yàn)樗倪呅螢檎叫?,則,故直線與所成的角為,A正確;連接,因?yàn)槠矫妫矫?,則,因?yàn)?,,所以平面,又平面,所以,故B正確;連接,設(shè),連接,因?yàn)槠矫?,平面,則,因?yàn)?,,所以平面,所以為直線與平面所成的角,設(shè)正方體棱長(zhǎng)為,則,,,所以,直線與平面所成的角為,故C錯(cuò)誤;因?yàn)槠矫?,所以為直線與平面所成的角,易得,故D正確.故選:ABD6.(2018·浙江·高考真題)已知四棱錐的底面是正方形,側(cè)棱長(zhǎng)均相等,是線段上的點(diǎn)(不含端點(diǎn)),設(shè)與所成的角為,與平面所成的角為,二面角的平面角為,則A. B. C. D.【答案】D【分析】分別作出線線角、線面角以及二面角,再構(gòu)造直角三角形,根據(jù)邊的大小關(guān)系確定角的大小關(guān)系.【詳解】設(shè)為正方形的中心,為中點(diǎn),過(guò)作的平行線,交于,過(guò)作垂直于,連接、、,則垂直于底面,垂直于,因此從而因?yàn)?,所以即,選D.
【點(diǎn)睛】線線角找平行,線面角找垂直,面面角找垂面.7.(2018·全國(guó)·高考真題)已知圓錐的頂點(diǎn)為,母線,所成角的余弦值為,與圓錐底面所成角為45°,若的面積為,則該圓錐的側(cè)面積為.【答案】【分析】先根據(jù)三角形面積公式求出母線長(zhǎng),再根據(jù)母線與底面所成角得底面半徑,最后根據(jù)圓錐側(cè)面積公式求出結(jié)果.【詳解】因?yàn)槟妇€,所成角的余弦值為,所以母線,所成角的正弦值為,因?yàn)榈拿娣e為,設(shè)母線長(zhǎng)為所以,因?yàn)榕c圓錐底面所成角為45°,所以底面半徑為,因此圓錐的側(cè)面積為.【整體點(diǎn)評(píng)】根據(jù)三角形面積公式先求出母線長(zhǎng),再根據(jù)線面角求出底面半徑,最后根據(jù)圓錐側(cè)面積公式求出側(cè)面積,思路直接自然,是該題的最優(yōu)解.8.(2018·全國(guó)·高考真題)在長(zhǎng)方體中,,與平面所成的角為,則該長(zhǎng)方體的體積為A. B. C. D.【答案】C【分析】首先畫(huà)出長(zhǎng)方體,利用題中條件,得到,根據(jù),求得,可以確定,之后利用長(zhǎng)方體的體積公式求出長(zhǎng)方體的體積.【詳解】在長(zhǎng)方體中,連接,
根據(jù)線面角的定義可知,因?yàn)?,所以,從而求得,所以該長(zhǎng)方體的體積為,故選C.【點(diǎn)睛】該題考查的是長(zhǎng)方體的體積的求解問(wèn)題,在解題的過(guò)程中,需要明確長(zhǎng)方體的體積公式為長(zhǎng)寬高的乘積,而題中的條件只有兩個(gè)值,所以利用題中的條件求解另一條邊的長(zhǎng)就顯得尤為重要,此時(shí)就需要明確線面角的定義,從而得到量之間的關(guān)系,從而求得結(jié)果.9.(2018·全國(guó)·高考真題)已知正方體的棱長(zhǎng)為1,每條棱所在直線與平面所成的角都相等,則截此正方體所得截面面積的最大值為A. B. C. D.【答案】A【分析】首先利用正方體的棱是3組每組有互相平行的4條棱,所以與12條棱所成角相等,只需與從同一個(gè)頂點(diǎn)出發(fā)的三條棱所成角相等即可,從而判斷出面的位置,截正方體所得的截面為一個(gè)正六邊形,且邊長(zhǎng)是面的對(duì)角線的一半,應(yīng)用面積公式求得結(jié)果.【詳解】根據(jù)相互平行的直線與平面所成的角是相等的,所以在正方體中,平面與線所成的角是相等的,所以平面與正方體的每條棱所在的直線所成角都是相等的,同理平面也滿足與正方體的每條棱所在的直線所成角都是相等,要求截面面積最大,則截面的位置為夾在兩個(gè)面與中間的,且過(guò)棱的中點(diǎn)的正六邊形,且邊長(zhǎng)為,所以其面積為,故選A.點(diǎn)睛:該題考查的是有關(guān)平面被正方體所截得的截面多邊形的面積問(wèn)題,首要任務(wù)是需要先確定截面的位置,之后需要從題的條件中找尋相關(guān)的字眼,從而得到其為過(guò)六條棱的中點(diǎn)的正六邊形,利用六邊形的面積的求法,應(yīng)用相關(guān)的公式求得結(jié)果.考點(diǎn)03二面角及其應(yīng)用1.(2023·北京·高考真題)坡屋頂是我國(guó)傳統(tǒng)建筑造型之一,蘊(yùn)含著豐富的數(shù)學(xué)元素.安裝燈帶可以勾勒出建筑輪廓,展現(xiàn)造型之美.如圖,某坡屋頂可視為一個(gè)五面體,其中兩個(gè)面是全等的等腰梯形,兩個(gè)面是全等的等腰三角形.若,且等腰梯形所在的平面、等腰三角形所在的平面與平面的夾角的正切值均為,則該五面體的所有棱長(zhǎng)之和為(
)
A. B.C. D.【答案】C【分析】先根據(jù)線面角的定義求得,從而依次求,,,,再把所有棱長(zhǎng)相加即可得解.【詳解】如圖,過(guò)做平面,垂足為,過(guò)分別做,,垂足分別為,,連接,
由題意得等腰梯形所在的面、等腰三角形所在的面與底面夾角分別為和,所以.因?yàn)槠矫?,平面,所以,因?yàn)椋矫?,,所以平面,因?yàn)槠矫?,所以?同理:,又,故四邊形是矩形,所以由得,所以,所以,所以在直角三角形中,在直角三角形中,,,又因?yàn)?,所有棱長(zhǎng)之和為.故選:C2.(2023·全國(guó)乙卷·高考真題)已知為等腰直角三角形,AB為斜邊,為等邊三角形,若二面角為,則直線CD與平面ABC所成角的正切值為(
)A. B. C. D.【答案】C【分析】根據(jù)給定條件,推導(dǎo)確定線面角,再利用余弦定理、正弦定理求解作答.【詳解】取的中點(diǎn),連接,因?yàn)槭堑妊苯侨切危覟樾边?,則有,又是等邊三角形,則,從而為二面角的平面角,即,
顯然平面,于是平面,又平面,因此平面平面,顯然平面平面,直線平面,則直線在平面內(nèi)的射影為直線,從而為直線與平面所成的角,令,則,在中,由余弦定理得:,由正弦定理得,即,顯然是銳角,,所以直線與平面所成的角的正切為.故選:C3.(2023·全國(guó)新Ⅱ卷·高考真題)(多選)已知圓錐的頂點(diǎn)為P,底面圓心為O,AB為底面直徑,,,點(diǎn)C在底面圓周上,且二面角為45°,則(
).A.該圓錐的體積為 B.該圓錐的側(cè)面積為C. D.的面積為【答案】AC【分析】根據(jù)圓錐的體積、側(cè)面積判斷A、B選項(xiàng)的正確性,利用二面角的知識(shí)判斷C、D選項(xiàng)的正確性.【詳解】依題意,,,所以,A選項(xiàng),圓錐的體積為,A選項(xiàng)正確;B選項(xiàng),圓錐的側(cè)面積為,B選項(xiàng)錯(cuò)誤;C選項(xiàng),設(shè)是的中點(diǎn),連接,則,所以是二面角的平面角,則,所以,故,則,C選項(xiàng)正確;D選項(xiàng),,所以,D選項(xiàng)錯(cuò)誤.故選:AC.
4.(2022·浙江·高考真題)如圖,已知正三棱柱,E,F(xiàn)分別是棱上的點(diǎn).記與所成的角為,與平面所成的角為,二面角的平面角為,則(
)A. B. C. D.【答案】A【分析】先用幾何法表示出,再根據(jù)邊長(zhǎng)關(guān)系即可比較大小.【詳解】如圖所示,過(guò)點(diǎn)作于,過(guò)作于,連接,則,,,,,,所以,故選:A.5.(2019·浙江·高考真題)設(shè)三棱錐的底面是正三角形,側(cè)棱長(zhǎng)均相等,是棱上的點(diǎn)(不含端點(diǎn)),記直線與直線所成角為,直線與平面所成角為,二面角的平面角為,則A. B.C. D.【答案】B【解析】本題以三棱錐為載體,綜合考查異面直線所成的角、直線與平面所成的角、二面角的概念,以及各種角的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 買賣金屬合同范例
- 舉辦展覽合同范例
- 開(kāi)發(fā)商車位營(yíng)銷合同范例
- 保鮮凍庫(kù)銷售合同范例
- 砌石壩合同范例
- 哈爾濱網(wǎng)簽合同范例
- 浙江勞務(wù)合同范例
- 護(hù)欄圍欄安裝合同范例
- 渠道分銷平移合同范例
- 超市兼職用工合同范例
- 2025年電工技師考試題庫(kù)及答案
- 2024年校社聯(lián)副主席競(jìng)選演講稿模版(3篇)
- 《體育場(chǎng)館照明方案》課件
- 中南大學(xué)攻防實(shí)驗(yàn)室方案
- 上海市縣(2024年-2025年小學(xué)六年級(jí)語(yǔ)文)部編版競(jìng)賽題(上學(xué)期)試卷及答案
- 試論中國(guó)特色社會(huì)主義道路的優(yōu)勢(shì)
- 椎管內(nèi)麻醉與治療課件
- 2023年冬季山東高中學(xué)業(yè)水平合格考政治試題真題(含答案)
- 文藝復(fù)興經(jīng)典名著選讀智慧樹(shù)知到期末考試答案章節(jié)答案2024年北京大學(xué)
- 勞務(wù)派遣勞務(wù)外包服務(wù)方案(技術(shù)方案)
- 巨細(xì)胞病毒感染診療指南(完整版)
評(píng)論
0/150
提交評(píng)論