




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
試卷第=page11頁,共=sectionpages33頁專題16圓錐曲線綜合問題多選題1.(2023·廣東·校聯(lián)考模擬預(yù)測)已知雙曲線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0上一點(diǎn),則以下結(jié)論中,正確的是(
)A.若SKIPIF1<0,且SKIPIF1<0軸,則SKIPIF1<0的方程為SKIPIF1<0B.若SKIPIF1<0的一條漸近線方程是SKIPIF1<0,則SKIPIF1<0的離心率為SKIPIF1<0C.若點(diǎn)SKIPIF1<0在SKIPIF1<0的右支上,SKIPIF1<0的離心率為SKIPIF1<0,則等腰SKIPIF1<0的面積為SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0的離心率SKIPIF1<0的取值范圍是SKIPIF1<0【答案】AD【分析】由雙曲線上一點(diǎn)SKIPIF1<0,及SKIPIF1<0軸,可得SKIPIF1<0的值,即可求得雙曲線方程,從而判斷A;根據(jù)雙曲線漸近線方程與離心率的關(guān)系即可判斷B;根據(jù)雙曲線的離心率與焦點(diǎn)三角形的幾何性質(zhì)即可求得等腰SKIPIF1<0的面積,從而判斷C;由已知結(jié)合正弦定理與雙曲線的定義、焦半徑的取值范圍即可求得雙曲線離心率的范圍,從而判斷D.【詳解】對于A,若SKIPIF1<0,且SKIPIF1<0軸,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0的方程為SKIPIF1<0,故A正確;對于B,若SKIPIF1<0的一條漸近線方程是SKIPIF1<0,則SKIPIF1<0,離心率SKIPIF1<0,故B不正確;對于C,若SKIPIF1<0的離心率為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,若點(diǎn)SKIPIF1<0在SKIPIF1<0的右支上,SKIPIF1<0為等腰三角形,則SKIPIF1<0,連接SKIPIF1<0,如圖,則SKIPIF1<0是直角三角形,所以SKIPIF1<0,故C不正確;對于D,若SKIPIF1<0,由正弦定理得SKIPIF1<0,可知點(diǎn)SKIPIF1<0在雙曲線的左支上,故SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的離心率SKIPIF1<0的取值范圍是SKIPIF1<0,故D正確.故選:AD.2.(2023·浙江·模擬預(yù)測)已知拋物線SKIPIF1<0的焦點(diǎn)為F,準(zhǔn)線與x軸的交點(diǎn)為M,過點(diǎn)F的直線l與拋物線C相交于A,B兩點(diǎn)(點(diǎn)A在第一象限),過A,B點(diǎn)作準(zhǔn)線的垂線,垂足分別為SKIPIF1<0.設(shè)直線l的傾斜角為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.則下列說法正確的是(
)A.SKIPIF1<0有可能為直角B.SKIPIF1<0C.Q為拋物線C上一個(gè)動(dòng)點(diǎn),SKIPIF1<0為定點(diǎn),SKIPIF1<0的最小值為SKIPIF1<0D.過F點(diǎn)作傾斜角的角平分線FP交拋物線C于P點(diǎn)(點(diǎn)P在第一象限),則存在SKIPIF1<0,使SKIPIF1<0【答案】ABD【分析】根據(jù)給定條件,求出拋物線方程,再逐項(xiàng)分析、計(jì)算判斷作答.【詳解】依題意,點(diǎn)SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0,設(shè)SKIPIF1<0,直線SKIPIF1<0,由SKIPIF1<0消去x得:SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,拋物線SKIPIF1<0,SKIPIF1<0,對于A,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,有SKIPIF1<0,SKIPIF1<0為直角,A正確;對于B,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因此SKIPIF1<0,即SKIPIF1<0,而SKIPIF1<0,則SKIPIF1<0,B正確;對于C,顯然點(diǎn)E在拋物線C內(nèi),SKIPIF1<0,當(dāng)且僅當(dāng)點(diǎn)Q是直線EF與拋物線C的交點(diǎn)時(shí)取等號,C錯(cuò)誤;對于D,由SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,同理SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,而SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,D正確.故選:ABD3.(2023秋·浙江·高三期末)如圖,已知拋物線SKIPIF1<0,M為x軸正半軸上一點(diǎn),SKIPIF1<0,過M的直線交SKIPIF1<0于B,C兩點(diǎn),直線SKIPIF1<0交拋物線另一點(diǎn)于D,直線SKIPIF1<0交拋物線另一點(diǎn)于A,且點(diǎn)SKIPIF1<0在第一象限,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【分析】設(shè)SKIPIF1<0,得SKIPIF1<0,由直線SKIPIF1<0的方程以及根與系數(shù)關(guān)系求得SKIPIF1<0,由直線SKIPIF1<0的方程以及根與系數(shù)關(guān)系求得SKIPIF1<0,根據(jù)弦長公式求得SKIPIF1<0,進(jìn)而求得SKIPIF1<0,根據(jù)三角形的面積公式求得SKIPIF1<0【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,設(shè)直線SKIPIF1<0,由SKIPIF1<0消去SKIPIF1<0并化簡得SKIPIF1<0,A選項(xiàng):所以SKIPIF1<0,同理可得SKIPIF1<0,所以SKIPIF1<0,故A正確;B選項(xiàng):SKIPIF1<0,故B錯(cuò)誤;C選項(xiàng):同理可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,故C錯(cuò)誤;D選項(xiàng):SKIPIF1<0,故D正確.故選:AD4.(2023·浙江嘉興·統(tǒng)考模擬預(yù)測)已知橢圓SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別為橢圓SKIPIF1<0的左右頂點(diǎn),SKIPIF1<0為橢圓的上頂點(diǎn).設(shè)SKIPIF1<0是橢圓SKIPIF1<0上一點(diǎn),且不與頂點(diǎn)重合,若直線SKIPIF1<0與直線SKIPIF1<0交于點(diǎn)SKIPIF1<0,直線SKIPIF1<0與直線SKIPIF1<0交于點(diǎn)SKIPIF1<0,則(
)A.若直線SKIPIF1<0與SKIPIF1<0的斜率分別為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0B.直線SKIPIF1<0與SKIPIF1<0軸垂直C.SKIPIF1<0D.SKIPIF1<0【答案】ABC【分析】設(shè)SKIPIF1<0,由斜率公式及點(diǎn)在橢圓上可得SKIPIF1<0判斷A,聯(lián)立直線的方程求出SKIPIF1<0、SKIPIF1<0坐標(biāo),由條件可得SKIPIF1<0即可判斷B,求出SKIPIF1<0中點(diǎn)在SKIPIF1<0上,即可判斷CD.【詳解】如圖,設(shè)SKIPIF1<0,則SKIPIF1<0,故A正確;直線SKIPIF1<0的方程為SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,同理可得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,則直線SKIPIF1<0與SKIPIF1<0軸垂直,故B正確;同理SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0的中點(diǎn)在直線SKIPIF1<0上,故C正確;D錯(cuò)誤,故選:ABC.5.(2023春·重慶沙坪壩·高三重慶八中??茧A段練習(xí))已知雙曲線SKIPIF1<0(SKIPIF1<0)的左、右焦點(diǎn)分別為SKIPIF1<0,直線SKIPIF1<0交雙曲線SKIPIF1<0于SKIPIF1<0兩點(diǎn),點(diǎn)SKIPIF1<0為SKIPIF1<0上一動(dòng)點(diǎn)記直線SKIPIF1<0的斜率分別為SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0到SKIPIF1<0的漸近線的距離為SKIPIF1<0,則下列說法正確的是(
)A.雙曲線SKIPIF1<0的離心率為SKIPIF1<0B.過右焦點(diǎn)的直線與雙曲線SKIPIF1<0相交SKIPIF1<0兩點(diǎn),線段SKIPIF1<0長度的最小值為4C.若SKIPIF1<0的角平分線與SKIPIF1<0軸交點(diǎn)為SKIPIF1<0,則SKIPIF1<0D.若雙曲線SKIPIF1<0在SKIPIF1<0處的切線與兩漸近線交于SKIPIF1<0兩點(diǎn),則SKIPIF1<0【答案】ACD【分析】首先由已知條件求得雙曲線方程為SKIPIF1<0,求出離心率判斷A,由雙曲線的性質(zhì)求得SKIPIF1<0最小值判斷B,利用角平分線定理求得SKIPIF1<0,計(jì)算三角形面積判斷C,設(shè)SKIPIF1<0,由導(dǎo)數(shù)求得切線方程后,求出SKIPIF1<0點(diǎn)坐標(biāo),計(jì)算三角形面積判斷D.【詳解】由題意知SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,相減整理得SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,雙曲線的方程為SKIPIF1<0,對于A:SKIPIF1<0,故SKIPIF1<0,選項(xiàng)A正確;對于B:因?qū)嵼S長SKIPIF1<0,故選項(xiàng)B錯(cuò)誤;對于C:記SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由角平分線定理得:SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,于是SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故選項(xiàng)C正確;對于D:設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,切線方程為SKIPIF1<0,整理得SKIPIF1<0,同理SKIPIF1<0時(shí),,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,切線方程為SKIPIF1<0,整理得SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0或SKIPIF1<0,切線方程為SKIPIF1<0或SKIPIF1<0,切線方程也可表示為SKIPIF1<0,所以過SKIPIF1<0的切線方程為SKIPIF1<0,與漸近線SKIPIF1<0聯(lián)立解得SKIPIF1<0,故SKIPIF1<0;與漸近線SKIPIF1<0聯(lián)立,解得SKIPIF1<0,于是SKIPIF1<0,故選項(xiàng)D正確,故選:ACD6.(2023·重慶沙坪壩·高三重慶八中校考階段練習(xí))加斯帕爾·蒙日(如圖甲)是18~19世紀(jì)法國著名的幾何學(xué)家,他在研究圓錐曲線時(shí)發(fā)現(xiàn):橢圓的任意兩條互相垂直的切線的交點(diǎn)都在同一個(gè)圓上,其圓心是橢圓的中心,這個(gè)圓被稱為“蒙日圓”(圖乙).已知長方形R的四邊均與橢圓SKIPIF1<0相切,則下列說法正確的是(
)A.橢圓C的離心率為SKIPIF1<0 B.橢圓C的蒙日圓方程為SKIPIF1<0C.橢圓C的蒙日圓方程為SKIPIF1<0 D.長方形R的面積最大值為18【答案】CD【分析】由SKIPIF1<0結(jié)合離心率公式判斷A;當(dāng)長方體R的對稱軸恰好就是的對稱軸橢圓C時(shí),求出蒙日圓的半徑,進(jìn)而判斷BC;設(shè)長方體R的長為SKIPIF1<0,寬為SKIPIF1<0,由基本不等式判斷D.【詳解】由題意可知SKIPIF1<0,則橢圓C的離心率為SKIPIF1<0,故A錯(cuò)誤;當(dāng)長方體R的對稱軸恰好就是橢圓C的對稱軸時(shí),其長為SKIPIF1<0寬為SKIPIF1<0,所以橢圓C的蒙日圓的半徑為SKIPIF1<0,即橢圓C的蒙日圓方程為SKIPIF1<0,故C正確,B錯(cuò)誤;設(shè)長方體R的長為SKIPIF1<0,寬為SKIPIF1<0,則SKIPIF1<0,長方形R的面積為SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),取等號,即長方形R的面積最大值為18,故D正確;故選:CD7.(2023·遼寧·校聯(lián)考模擬預(yù)測)已知F是拋物線SKIPIF1<0的焦點(diǎn),點(diǎn)SKIPIF1<0在拋物線W上,過點(diǎn)F的兩條互相垂直的直線SKIPIF1<0,SKIPIF1<0分別與拋物線W交于B,C和D,E,過點(diǎn)A分別作SKIPIF1<0,SKIPIF1<0的垂線,垂足分別為M,N,則(
)A.四邊形SKIPIF1<0面積的最大值為2B.四邊形SKIPIF1<0周長的最大值為SKIPIF1<0C.SKIPIF1<0為定值SKIPIF1<0D.四邊形SKIPIF1<0面積的最小值為32【答案】ACD【分析】根據(jù)給定條件,求出拋物線SKIPIF1<0的方程,確定四邊形SKIPIF1<0形狀,利用勾股定理及均值不等式計(jì)算判斷A,B;設(shè)出直線SKIPIF1<0的方程,與拋物線方程聯(lián)立,求出弦SKIPIF1<0長即可計(jì)算推理判斷C,D作答.【詳解】因?yàn)辄c(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,所以SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,拋物線SKIPIF1<0的焦點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號成立,所以四邊形SKIPIF1<0面積的最大值為2,故A正確.由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號成立,所以四邊形SKIPIF1<0周長的最大值為SKIPIF1<0,故B不正確.設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0消x得SKIPIF1<0,方程SKIPIF1<0的判別式SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,同理得SKIPIF1<0,SKIPIF1<0,C正確.SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號成立,此時(shí)SKIPIF1<0,故D正確.故選:ACD.8.(2023·遼寧·校聯(lián)考一模)拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,準(zhǔn)線為SKIPIF1<0,經(jīng)過SKIPIF1<0上的點(diǎn)SKIPIF1<0作SKIPIF1<0的切線m,m與y軸、l、x軸分別相交于點(diǎn)N、P、Q,過M作l垂線,垂足為SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0為SKIPIF1<0中點(diǎn)C.四邊形SKIPIF1<0是菱形 D.若SKIPIF1<0,則SKIPIF1<0【答案】BCD【分析】設(shè)SKIPIF1<0與SKIPIF1<0軸交點(diǎn)為SKIPIF1<0,則SKIPIF1<0未必是SKIPIF1<0的中點(diǎn),即可判斷A,利用韋達(dá)定理表示出SKIPIF1<0的坐標(biāo)可判斷B,根據(jù)菱形的判定定理可判斷C,利用三角形的全等關(guān)系可判斷D.【詳解】設(shè)SKIPIF1<0,可知SKIPIF1<0斜率SKIPIF1<0存在,可設(shè)SKIPIF1<0,將SKIPIF1<0代入可得SKIPIF1<0,由SKIPIF1<0,即SKIPIF1<0可得SKIPIF1<0,因此SKIPIF1<0,令SKIPIF1<0解得SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,SKIPIF1<0,要使SKIPIF1<0,則SKIPIF1<0必需為SKIPIF1<0中點(diǎn),則必有SKIPIF1<0,即SKIPIF1<0,所以當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0才成立,無法滿足任意性,A錯(cuò)誤;SKIPIF1<0中令SKIPIF1<0,于是SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0中點(diǎn),選項(xiàng)B正確.因?yàn)镾KIPIF1<0,所以SKIPIF1<0是SKIPIF1<0的垂直平分線,而SKIPIF1<0軸,所以四邊形SKIPIF1<0是菱形,選項(xiàng)C正確;SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,選項(xiàng)D正確.故選:BCD.9.(2023·河北邯鄲·統(tǒng)考一模)已知雙曲線C:SKIPIF1<0的左、右焦點(diǎn)分別是SKIPIF1<0,SKIPIF1<0,過SKIPIF1<0作圓SKIPIF1<0的切線l,切點(diǎn)為M,且直線l與雙曲線C的左、右兩支分別交于A,B兩點(diǎn),則下列結(jié)論正確的是(
)A.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0B.若SKIPIF1<0,則雙曲線C的漸近線方程為SKIPIF1<0C.若SKIPIF1<0,則雙曲線C的離心率是SKIPIF1<0D.若M是SKIPIF1<0的中點(diǎn),則雙曲線C的離心率是SKIPIF1<0【答案】ABD【分析】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,根據(jù)選項(xiàng)中的條件,求出SKIPIF1<0和SKIPIF1<0,利用雙曲線的定義,求出漸近線方程和離心率等結(jié)果.【詳解】如圖所示,對于A:由SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0.在SKIPIF1<0中,由余弦定理可得SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,從而SKIPIF1<0SKIPIF1<0,故A正確;對于B:由SKIPIF1<0,得SKIPIF1<0,因?yàn)镺為SKIPIF1<0的中點(diǎn),所以M為SKIPIF1<0的中點(diǎn).由題意可知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.由雙曲線的定義可得SKIPIF1<0,即SKIPIF1<0,則雙曲線C的漸近線方程為SKIPIF1<0,故B正確;對于C:由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0SKIPIF1<0.在SKIPIF1<0中,由余弦定理可得SKIPIF1<0,整理得SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,故C錯(cuò)誤;對于D:因?yàn)镸,O分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.由雙曲線的定義可得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,故D正確.故選:ABD10.(2023·山東濰坊·統(tǒng)考一模)雙曲線的光學(xué)性質(zhì):從雙曲線的一個(gè)焦點(diǎn)發(fā)出的光線,經(jīng)雙曲線反射后,反射光線的反向延長線經(jīng)過雙曲線的另一個(gè)焦點(diǎn).由此可得,過雙曲線上任意一點(diǎn)的切線.平分該點(diǎn)與兩焦點(diǎn)連線的夾角.已知SKIPIF1<0分別為雙曲線SKIPIF1<0的左,右焦點(diǎn),過SKIPIF1<0右支上一點(diǎn)SKIPIF1<0SKIPIF1<0作直線SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,交SKIPIF1<0軸于點(diǎn)SKIPIF1<0.則(
)A.SKIPIF1<0的漸近線方程為SKIPIF1<0 B.點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0C.過點(diǎn)SKIPIF1<0作SKIPIF1<0,垂足為SKIPIF1<0,則SKIPIF1<0 D.四邊形SKIPIF1<0面積的最小值為4【答案】ACD【分析】根據(jù)方程,可直接求出漸近線方程,即可判斷A項(xiàng);由已知可得SKIPIF1<0,進(jìn)而結(jié)合雙曲線方程,即可得出點(diǎn)SKIPIF1<0的坐標(biāo),即可判斷B項(xiàng);根據(jù)雙曲線的光學(xué)性質(zhì)可推得,點(diǎn)SKIPIF1<0為SKIPIF1<0的中點(diǎn).進(jìn)而得出SKIPIF1<0,結(jié)合雙曲線的定義,即可判斷C項(xiàng);由SKIPIF1<0,代入利用基本不等式即可求出面積的最小值,判斷D項(xiàng).【詳解】對于A項(xiàng),由已知可得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的漸近線方程為SKIPIF1<0,故A項(xiàng)正確;對于B項(xiàng),設(shè)SKIPIF1<0,則SKIPIF1<0,整理可得SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,所以有SKIPIF1<0,解得SKIPIF1<0,所以點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,故B項(xiàng)錯(cuò)誤;對于C項(xiàng),如上圖,顯然SKIPIF1<0為雙曲線的切線.由雙曲線的光學(xué)性質(zhì)可知,SKIPIF1<0平分SKIPIF1<0,延長SKIPIF1<0與SKIPIF1<0的延長線交于點(diǎn)SKIPIF1<0.則SKIPIF1<0垂直平分SKIPIF1<0,即點(diǎn)SKIPIF1<0為SKIPIF1<0的中點(diǎn).又SKIPIF1<0是SKIPIF1<0的中點(diǎn),所以,SKIPIF1<0SKIPIF1<0,故C項(xiàng)正確;對于D項(xiàng),SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號成立.所以,四邊形SKIPIF1<0面積的最小值為4,故D項(xiàng)正確.故選:ACD.【點(diǎn)睛】思路點(diǎn)睛:C項(xiàng)中,結(jié)合已知中,給出的雙曲線的光學(xué)性質(zhì),即可推出SKIPIF1<0.11.(2023·山東臨沂·統(tǒng)考一模)拋物線有如下光學(xué)性質(zhì):由其焦點(diǎn)射出的光線經(jīng)拋物線反射后,沿平行于拋物線對稱軸的方向射出.反之,平行于拋物線對稱軸的入射光線經(jīng)拋物線反射后必過拋物線的焦點(diǎn).已知拋物線SKIPIF1<0,SKIPIF1<0為坐標(biāo)原點(diǎn),一束平行于SKIPIF1<0軸的光線SKIPIF1<0從點(diǎn)SKIPIF1<0射入,經(jīng)過SKIPIF1<0上的點(diǎn)SKIPIF1<0反射后,再經(jīng)過SKIPIF1<0上另一點(diǎn)SKIPIF1<0反射后,沿直線SKIPIF1<0射出,經(jīng)過點(diǎn)SKIPIF1<0,則()A.SKIPIF1<0B.延長SKIPIF1<0交直線SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線C.SKIPIF1<0D.若SKIPIF1<0平分SKIPIF1<0,則SKIPIF1<0【答案】AB【分析】根據(jù)題設(shè)和拋物線和性質(zhì)得到點(diǎn)SKIPIF1<0,SKIPIF1<0,將點(diǎn)SKIPIF1<0SKIPIF1<0代入拋物線SKIPIF1<0的方程得到SKIPIF1<0,從而求出直線SKIPIF1<0的方程,聯(lián)立直線SKIPIF1<0和拋物線SKIPIF1<0得到點(diǎn)SKIPIF1<0的坐標(biāo),即可判斷選項(xiàng)A和C,又結(jié)合直線SKIPIF1<0和直線SKIPIF1<0得到點(diǎn)SKIPIF1<0,即可判斷B選項(xiàng),若SKIPIF1<0平分SKIPIF1<0,得到SKIPIF1<0,轉(zhuǎn)化為直線SKIPIF1<0斜率SKIPIF1<0和直線SKIPIF1<0的斜率的關(guān)系式即可求出SKIPIF1<0.【詳解】由題意知,點(diǎn)SKIPIF1<0,SKIPIF1<0,如圖:將SKIPIF1<0代入SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,則直線SKIPIF1<0的斜率SKIPIF1<0,則直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,聯(lián)立SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0所以SKIPIF1<0,所以A選項(xiàng)正確;又SKIPIF1<0,所以C選項(xiàng)錯(cuò)誤;又知直線SKIPIF1<0軸,且SKIPIF1<0,則直線SKIPIF1<0的方程為SKIPIF1<0,又SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0在直線SKIPIF1<0上,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線,所以B選項(xiàng)正確;設(shè)直線SKIPIF1<0的傾斜角為SKIPIF1<0(SKIPIF1<0),斜率為SKIPIF1<0,直線SKIPIF1<0的傾斜角為SKIPIF1<0,若SKIPIF1<0平分SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,解得:SKIPIF1<0,所以D選項(xiàng)錯(cuò)誤;故選:AB.12.(2023秋·湖北武漢·高三統(tǒng)考期末)已知點(diǎn)SKIPIF1<0是曲線SKIPIF1<0:SKIPIF1<0上的動(dòng)點(diǎn),點(diǎn)SKIPIF1<0是直線SKIPIF1<0上的動(dòng)點(diǎn).點(diǎn)SKIPIF1<0是坐標(biāo)原點(diǎn),則下列說法正確的有(
)A.原點(diǎn)在曲線SKIPIF1<0上B.曲線SKIPIF1<0圍成的圖形的面積為SKIPIF1<0C.過SKIPIF1<0至多可以作出4條直線與曲線相切D.滿足SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0的點(diǎn)有3個(gè)【答案】ACD【分析】分類討論后,根據(jù)對稱性畫出函數(shù)圖像,從而可以進(jìn)一步求解.【詳解】對于A:將原點(diǎn)坐標(biāo)SKIPIF1<0代入,SKIPIF1<0正確,故A選項(xiàng)正確;對于B:當(dāng)SKIPIF1<0時(shí),曲線SKIPIF1<0:SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,第一象限內(nèi)曲線SKIPIF1<0與坐標(biāo)軸圍成的圖形的面積為SKIPIF1<0,所以總面積為:SKIPIF1<0.故選項(xiàng)B錯(cuò)誤;由函數(shù)圖像知過SKIPIF1<0至多可以作出4條直線與曲線相切,故選項(xiàng)C正確;原點(diǎn)到直線SKIPIF1<0的距離為:SKIPIF1<0滿足SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0的點(diǎn)有SKIPIF1<0共3個(gè),故選項(xiàng)D正確.故選:ACD.13.(2023春·湖北·高三校聯(lián)考階段練習(xí))過橢圓SKIPIF1<0外一點(diǎn)SKIPIF1<0作橢圓SKIPIF1<0的兩條切線,切點(diǎn)分別為SKIPIF1<0,若直線SKIPIF1<0的斜率之積為SKIPIF1<0(SKIPIF1<0為常數(shù)),則點(diǎn)SKIPIF1<0的軌跡可能是(
)A.兩條直線 B.圓的一部分C.橢圓的一部分 D.雙曲線的一部分【答案】BCD【分析】設(shè)出切線方程且斜率為SKIPIF1<0,聯(lián)立橢圓化簡使判別式等于零得到關(guān)于SKIPIF1<0等式,根據(jù)判別式及二次方程和韋達(dá)定理可得SKIPIF1<0的范圍及SKIPIF1<0,根據(jù)SKIPIF1<0的不同取值分別判斷關(guān)于SKIPIF1<0方程所對應(yīng)的軌跡即可.【詳解】解:依題意可知直線SKIPIF1<0和直線SKIPIF1<0的斜率存在,設(shè)過SKIPIF1<0的橢圓的切線方程為SKIPIF1<0,聯(lián)立SKIPIF1<0化簡可得:SKIPIF1<0,取SKIPIF1<0,即SKIPIF1<0,且有SKIPIF1<0,且上式兩根分別為SKIPIF1<0,則上式的判別式SKIPIF1<0,整理得SKIPIF1<0,符合題意,所以SKIPIF1<0,①若SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0點(diǎn)的軌跡是直線(兩條)的一部分;②若SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0點(diǎn)的軌跡是直線(兩條)的一部分;若SKIPIF1<0且SKIPIF1<0,整理可得SKIPIF1<0,③當(dāng)SKIPIF1<0時(shí),SKIPIF1<012,軌跡方程可化為SKIPIF1<0,即SKIPIF1<0點(diǎn)的軌跡是圓的一部分;④當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,且SKIPIF1<0,由于SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0點(diǎn)的軌跡是橢圓的一部分;⑤當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0表示焦點(diǎn)在SKIPIF1<0軸上的雙曲線,由于SKIPIF1<0,所以SKIPIF1<0點(diǎn)的軌跡是雙曲線的一部分.故選:BCD【點(diǎn)睛】思路點(diǎn)睛:該題考查直線與圓錐曲線的綜合問題,屬于難題,關(guān)于求軌跡方程的思路有:(1)已知軌跡,建立合適的軌跡方程,用待定系數(shù)求解;(2)未知軌跡,求哪點(diǎn)軌跡設(shè)哪點(diǎn)坐標(biāo)為SKIPIF1<0,根據(jù)題意建立關(guān)于SKIPIF1<0的等式即可;(3)軌跡不好判斷,等式關(guān)系不好找時(shí),找要求的軌跡點(diǎn)與題中的定點(diǎn)或定直線之間的定量關(guān)系,根據(jù)轉(zhuǎn)化找出軌跡特點(diǎn),建立軌跡方程,用待定系數(shù)求解.14.(2023·湖南·模擬預(yù)測)已知O為坐標(biāo)原點(diǎn),SKIPIF1<0,SKIPIF1<0分別是雙曲線E:SKIPIF1<0的左、右焦點(diǎn),P是雙曲線E的右支上一點(diǎn),若SKIPIF1<0,雙曲線E的離心率為SKIPIF1<0,則下列結(jié)論正確的是(
)A.雙曲線E的標(biāo)準(zhǔn)方程為SKIPIF1<0B.雙曲線E的漸近線方程為SKIPIF1<0C.點(diǎn)P到兩條漸近線的距離之積為SKIPIF1<0D.若直線SKIPIF1<0與雙曲線E的另一支交于點(diǎn)M,點(diǎn)N為PM的中點(diǎn),則SKIPIF1<0【答案】ACD【分析】根據(jù)雙曲線定義及離心率求出SKIPIF1<0得到雙曲線的標(biāo)準(zhǔn)方程,即可求出漸近線方程判斷AB,再由點(diǎn)到漸近線的距離判斷C,點(diǎn)差法可判斷D.【詳解】根據(jù)雙曲線的定義得,SKIPIF1<0,故SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以雙曲線E的標(biāo)準(zhǔn)方程為SKIPIF1<0,漸近線方程為SKIPIF1<0,即SKIPIF1<0,所以A正確,B不正確;設(shè)SKIPIF1<0,則點(diǎn)P到兩條漸近線的距離之積為SKIPIF1<0,所以C正確;設(shè)SKIPIF1<0,SKIPIF1<0,因?yàn)镻,M在雙曲線E上,所SKIPIF1<0①,SKIPIF1<0②,①-②并整理得,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以D正確.故選:ACD.15.(2023·湖南張家界·統(tǒng)考二模)過拋物線SKIPIF1<0的焦點(diǎn)F的直線SKIPIF1<0交拋物線E于A,B兩點(diǎn)(點(diǎn)A在第一象限),M為線段AB的中點(diǎn).若SKIPIF1<0,則下列說法正確的是(
)A.拋物線E的準(zhǔn)線方程為SKIPIF1<0B.過A,B兩點(diǎn)作拋物線的切線,兩切線交于點(diǎn)N,則點(diǎn)N在以AB為直徑的圓上C.若SKIPIF1<0為坐標(biāo)原點(diǎn),則SKIPIF1<0D.若過點(diǎn)SKIPIF1<0且與直線SKIPIF1<0垂直的直線SKIPIF1<0交拋物線于C,D兩點(diǎn),則SKIPIF1<0【答案】BC【分析】對于A項(xiàng),方法一:運(yùn)用韋達(dá)定理SKIPIF1<0及拋物線定義表示SKIPIF1<0、SKIPIF1<0代入解方程即可;方法二:運(yùn)用SKIPIF1<0求解即可;對于B項(xiàng),運(yùn)用導(dǎo)數(shù)幾何意義分別求得SKIPIF1<0、SKIPIF1<0,將SKIPIF1<0的值代入SKIPIF1<0計(jì)算即可;對于C項(xiàng),運(yùn)用韋達(dá)定理及拋物線弦長公式求得SKIPIF1<0、SKIPIF1<0及SKIPIF1<0的值,進(jìn)而求出點(diǎn)M坐標(biāo),運(yùn)用兩點(diǎn)間距離公式求得SKIPIF1<0即可;對于D項(xiàng),方法一:將SKIPIF1<0中的斜率k換成SKIPIF1<0可求得SKIPIF1<0,進(jìn)而求得SKIPIF1<0的值;方法二:運(yùn)用拋物線焦點(diǎn)弦長公式可得SKIPIF1<0,進(jìn)而求得SKIPIF1<0的值.【詳解】對于A項(xiàng),方法一:由題意可設(shè)過點(diǎn)SKIPIF1<0的直線l的方程為SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,聯(lián)立方程組SKIPIF1<0消去x整理得SKIPIF1<0,可得SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0則SKIPIF1<0,解得SKIPIF1<0,所以拋物線SKIPIF1<0,故拋物線E的準(zhǔn)線方程為SKIPIF1<0,故A項(xiàng)錯(cuò)誤;方法二:∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,所以拋物線E:SKIPIF1<0,故拋物線E的準(zhǔn)線方程為SKIPIF1<0,故A項(xiàng)錯(cuò)誤;對于B項(xiàng),設(shè)SKIPIF1<0,SKIPIF1<0,拋物線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,易得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以直線NA,NB垂直,所以點(diǎn)N在以AB為直徑的圓上,故B項(xiàng)正確;對于C項(xiàng),由A項(xiàng)知,拋物線E:SKIPIF1<0,則直線l的方程為SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即:SKIPIF1<0,所以SKIPIF1<0,故C項(xiàng)正確;對于D項(xiàng),方法一:由C項(xiàng)知,SKIPIF1<0,SKIPIF1<0,又因?yàn)橹本€l垂直于直線m,所以SKIPIF1<0,所以SKIPIF1<0.故D項(xiàng)錯(cuò)誤.方法二:由題意知SKIPIF1<0.設(shè)直線SKIPIF1<0的傾斜角為SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,易得直線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,根據(jù)焦點(diǎn)弦長公式可得SKIPIF1<0,所以SKIPIF1<0.故D項(xiàng)錯(cuò)誤.故選:BC.16.(2023春·湖南·高三校聯(lián)考階段練習(xí))設(shè)雙曲線SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,若直線SKIPIF1<0與SKIPIF1<0的右支交于SKIPIF1<0兩點(diǎn),且SKIPIF1<0為SKIPIF1<0的重心,則(
)A.SKIPIF1<0的離心率的取值范圍為SKIPIF1<0B.SKIPIF1<0的離心率的取值范圍為SKIPIF1<0C.直線SKIPIF1<0斜率的取值范圍為SKIPIF1<0D.直線SKIPIF1<0斜率的取值范圍為SKIPIF1<0【答案】AC【分析】根據(jù)重心性質(zhì)得出SKIPIF1<0中點(diǎn)SKIPIF1<0的坐標(biāo),根據(jù)直線SKIPIF1<0與SKIPIF1<0的右支交于SKIPIF1<0兩點(diǎn)可知點(diǎn)SKIPIF1<0在右支內(nèi)部,將SKIPIF1<0的坐標(biāo)代入雙曲線中建立不等式,即可得離心率的范圍,根據(jù)點(diǎn)差法可得直線SKIPIF1<0的斜率與SKIPIF1<0之間等式關(guān)系,由SKIPIF1<0不共線建立不等式,解出離心率具體范圍,根據(jù)離心率的范圍及直線SKIPIF1<0的斜率與SKIPIF1<0之間等式關(guān)系,即可得斜率的取值范圍,解出即可.【詳解】解:設(shè)SKIPIF1<0為SKIPIF1<0的中點(diǎn),根據(jù)重心性質(zhì)可得SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,因?yàn)橹本€SKIPIF1<0與SKIPIF1<0的右支交于SKIPIF1<0兩點(diǎn),所以點(diǎn)SKIPIF1<0在雙曲線右支內(nèi)部,故有SKIPIF1<0,解得SKIPIF1<0,當(dāng)直線SKIPIF1<0斜率不存在時(shí),SKIPIF1<0的中點(diǎn)SKIPIF1<0在SKIPIF1<0軸上,故SKIPIF1<0三點(diǎn)不共線,不符合題意舍,設(shè)直線SKIPIF1<0斜率為SKIPIF1<0,設(shè)SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0在雙曲線上,所以SKIPIF1<0,兩式相減可得:SKIPIF1<0,即SKIPIF1<0,即有SKIPIF1<0成立,即有SKIPIF1<0,因?yàn)镾KIPIF1<0不共線,即SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0的離心率的取值范圍為SKIPIF1<0,因?yàn)镾KIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:AC【點(diǎn)睛】思路點(diǎn)睛:該題考查直線與圓錐曲線的綜合問題,屬于難題,關(guān)于圓錐曲線中弦中點(diǎn)和直線斜率有關(guān)問題的思路有:(1)設(shè)出點(diǎn)的坐標(biāo)SKIPIF1<0;(2)根據(jù)中點(diǎn)坐標(biāo)建立等式:SKIPIF1<0,SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年云南省農(nóng)業(yè)農(nóng)村廳下屬事業(yè)單位真題
- 城市交通需求預(yù)測重點(diǎn)基礎(chǔ)知識點(diǎn)
- 江蘇省東臺市第四教育聯(lián)盟2025屆八下數(shù)學(xué)期末預(yù)測試題含解析
- 2024年山西能源學(xué)院輔導(dǎo)員考試真題
- 2024年重慶石柱縣融媒體中心招聘筆試真題
- 班級故事分享平臺的建立計(jì)劃
- 2024年湖北省農(nóng)業(yè)農(nóng)村廳下屬事業(yè)單位真題
- 2024年南平市太平鎮(zhèn)衛(wèi)生院招聘筆試真題
- 2024年牡丹江穆棱市鄉(xiāng)村醫(yī)生招聘筆試真題
- 2024年福建福州榕發(fā)物業(yè)發(fā)展有限公司招聘真題
- 2024年江西省高考政治試卷真題(含答案)
- 服裝店員工考勤管理制度
- 國人毛孔粗大表征研究及護(hù)理指南 2024
- 質(zhì)量信得過班組培訓(xùn)課件
- 水利工程施工監(jiān)理規(guī)范SL288-2014(CB、JL用表全套)
- 鐵路信號技師技術(shù)總結(jié)
- 洗瓶機(jī)推瓶機(jī)構(gòu)設(shè)計(jì)計(jì)算說明書+運(yùn)動(dòng)簡圖+運(yùn)動(dòng)循環(huán)圖
- DL∕T 707-2014 HS系列環(huán)錘式破碎機(jī)
- 費(fèi)用組成-特殊施工增加費(fèi)課件講解
- 2024年湖南省長沙市雅禮實(shí)驗(yàn)中學(xué)中考二??荚囉⒄Z試題
- 國民經(jīng)濟(jì)行業(yè)分類代碼表
評論
0/150
提交評論