【高考重難點(diǎn)大題專題練】專題5之3 空間幾何體的綜合問題_第1頁
【高考重難點(diǎn)大題專題練】專題5之3 空間幾何體的綜合問題_第2頁
【高考重難點(diǎn)大題專題練】專題5之3 空間幾何體的綜合問題_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題三空間幾何體的綜合問題總分:70分建議用時(shí):60分鐘三、解答題17、如圖,AE⊥平面ABCD,CF∥AE,AD∥BC,AD⊥AB,AB=AD=1,AE=BC=2.(1)求證:BF∥平面ADE;(2)求直線CE與平面BDE所成角的正弦值;(3)若二面角E-BD-F的余弦值為eq\f(1,3),求線段CF的長(zhǎng).18、如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為菱形,E為CD的中點(diǎn).(1)求證:BD⊥平面PAC;(2)若∠ABC=60°,求證:平面PAB⊥平面PAE;(3)棱PB上是否存在點(diǎn)F,使得CF∥平面PAE?說明理由.19、如圖①,已知正方形ABCD的邊長(zhǎng)為4,E,F(xiàn)分別為AD,BC的中點(diǎn),將正方形ABCD沿EF折成如圖②所示的二面角,且二面角的大小為60°,點(diǎn)M在線段AB上(包含端點(diǎn)),連接AD.(1)若M為AB的中點(diǎn),直線MF與平面ADE的交點(diǎn)為O,試確定點(diǎn)O的位置,并證明直線OD∥平面EMC;(2)是否存在點(diǎn)M,使得直線DE與平面EMC所成的角為60°?若存在,求此時(shí)二面角M-EC-F的余弦值;若不存在,說明理由.20、如圖,在四棱錐中,平面,四邊形是等腰梯形分別是的中點(diǎn).(1)證明:平面平面;(2)若二面角的大小為60°,求四棱錐的體積.21、如圖,邊長(zhǎng)為2的正方形所在的平面與半圓弧所在平面垂直,是上異于,的點(diǎn).(1)證明:平面平面;(2)當(dāng)三棱錐體積最大時(shí),求面與面所成二面角的正弦值.22、如圖,在四棱錐中,底面為平行四邊形,為等邊三角形,平面平面,,,,(Ⅰ)設(shè)分別為的中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論