中南民族大學(xué)《Pthon數(shù)據(jù)分析與挖掘基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
中南民族大學(xué)《Pthon數(shù)據(jù)分析與挖掘基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
中南民族大學(xué)《Pthon數(shù)據(jù)分析與挖掘基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專(zhuān)業(yè):姓名:學(xué)號(hào):凡年級(jí)專(zhuān)業(yè)、姓名、學(xué)號(hào)錯(cuò)寫(xiě)、漏寫(xiě)或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁(yè),共1頁(yè)中南民族大學(xué)

《Pthon數(shù)據(jù)分析與挖掘基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、數(shù)據(jù)分析中,數(shù)據(jù)可視化的風(fēng)格應(yīng)根據(jù)不同的受眾和目的進(jìn)行選擇。以下關(guān)于數(shù)據(jù)可視化風(fēng)格選擇的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)可視化風(fēng)格可以分為簡(jiǎn)潔明了、生動(dòng)形象、專(zhuān)業(yè)嚴(yán)謹(jǐn)?shù)炔煌?lèi)型B.數(shù)據(jù)可視化風(fēng)格的選擇應(yīng)考慮受眾的背景、知識(shí)水平和需求等因素C.數(shù)據(jù)可視化風(fēng)格的選擇可以根據(jù)具體的問(wèn)題和數(shù)據(jù)特點(diǎn)來(lái)確定D.數(shù)據(jù)可視化風(fēng)格一旦確定就不能再進(jìn)行調(diào)整和改變,否則會(huì)影響用戶體驗(yàn)2、對(duì)于數(shù)據(jù)分析中的數(shù)據(jù)融合,假設(shè)要整合來(lái)自多個(gè)數(shù)據(jù)源的數(shù)據(jù),這些數(shù)據(jù)源的數(shù)據(jù)格式、字段和含義可能不同。以下哪種數(shù)據(jù)融合方法可能更有助于實(shí)現(xiàn)數(shù)據(jù)的一致性和可用性?()A.基于規(guī)則的融合,制定明確的融合規(guī)則B.基于模型的融合,利用機(jī)器學(xué)習(xí)算法C.手動(dòng)整合數(shù)據(jù),逐個(gè)處理D.不進(jìn)行數(shù)據(jù)融合,分別分析各個(gè)數(shù)據(jù)源的數(shù)據(jù)3、在數(shù)據(jù)挖掘中,若要對(duì)數(shù)據(jù)進(jìn)行分類(lèi),以下哪種算法對(duì)噪聲和缺失值具有較好的容忍性?()A.決策樹(shù)B.樸素貝葉斯C.支持向量機(jī)D.隨機(jī)森林4、在進(jìn)行數(shù)據(jù)挖掘任務(wù)時(shí),關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)數(shù)據(jù)中的頻繁項(xiàng)集。假設(shè)在一個(gè)超市購(gòu)物數(shù)據(jù)集中,發(fā)現(xiàn)面包、牛奶和雞蛋經(jīng)常一起被購(gòu)買(mǎi)。如果要進(jìn)一步提高關(guān)聯(lián)規(guī)則的實(shí)用性,以下哪個(gè)步驟可能是必要的?()A.增加更多商品種類(lèi)到分析中B.考慮商品的促銷(xiāo)活動(dòng)對(duì)購(gòu)買(mǎi)行為的影響C.分析不同時(shí)間段的購(gòu)買(mǎi)模式差異D.以上步驟都可能有幫助5、在進(jìn)行數(shù)據(jù)分析時(shí),需要處理數(shù)據(jù)的不平衡問(wèn)題。假設(shè)要分析信用卡欺詐檢測(cè)數(shù)據(jù),其中欺詐交易的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于正常交易。以下哪種方法在處理這種數(shù)據(jù)不平衡問(wèn)題時(shí)更能提高模型對(duì)少數(shù)類(lèi)(欺詐交易)的識(shí)別能力?()A.過(guò)采樣B.欠采樣C.合成少數(shù)類(lèi)過(guò)采樣技術(shù)(SMOTE)D.以上方法結(jié)合使用6、對(duì)于數(shù)據(jù)可視化,假設(shè)要展示不同地區(qū)在過(guò)去十年間的經(jīng)濟(jì)增長(zhǎng)趨勢(shì)。數(shù)據(jù)涵蓋多個(gè)指標(biāo),且地區(qū)之間存在較大差異。為了清晰、直觀地呈現(xiàn)數(shù)據(jù)的變化和對(duì)比,以下哪種可視化圖表可能是最適合的?()A.柱狀圖,分別展示每個(gè)地區(qū)每年的經(jīng)濟(jì)數(shù)據(jù)B.折線圖,呈現(xiàn)每個(gè)地區(qū)經(jīng)濟(jì)數(shù)據(jù)隨時(shí)間的變化C.餅圖,展示各地區(qū)在某一年的經(jīng)濟(jì)占比D.箱線圖,反映數(shù)據(jù)的分布情況7、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣的方法有很多,其中隨機(jī)抽樣是一種常用的方法。以下關(guān)于隨機(jī)抽樣的描述中,錯(cuò)誤的是?()A.隨機(jī)抽樣可以保證樣本的代表性和隨機(jī)性B.隨機(jī)抽樣可以減少數(shù)據(jù)的數(shù)量和復(fù)雜度C.隨機(jī)抽樣可以提高數(shù)據(jù)分析的效率和準(zhǔn)確性D.隨機(jī)抽樣只適用于大規(guī)模數(shù)據(jù)集,對(duì)于小數(shù)據(jù)集無(wú)法使用8、當(dāng)分析一組數(shù)據(jù)的離散程度時(shí),以下哪個(gè)指標(biāo)不僅考慮了數(shù)據(jù)的偏離程度,還考慮了數(shù)據(jù)的分布形態(tài)?()A.方差B.標(biāo)準(zhǔn)差C.平均差D.變異系數(shù)9、在數(shù)據(jù)分析中,生存分析用于研究事件發(fā)生的時(shí)間。假設(shè)要分析患者的生存時(shí)間與治療方案的關(guān)系,以下關(guān)于生存分析的描述,哪一項(xiàng)是不正確的?()A.可以計(jì)算生存曲線來(lái)直觀展示不同組患者的生存情況B.風(fēng)險(xiǎn)比(HazardRatio)用于比較不同組的風(fēng)險(xiǎn)程度C.生存分析只適用于醫(yī)學(xué)領(lǐng)域,在其他領(lǐng)域沒(méi)有應(yīng)用價(jià)值D.考慮刪失數(shù)據(jù)是生存分析的一個(gè)重要特點(diǎn)10、在數(shù)據(jù)庫(kù)中,若要提高數(shù)據(jù)的寫(xiě)入性能,以下哪種存儲(chǔ)引擎可能更適合?()A.InnoDBB.MyISAMC.MemoryD.Archive11、在數(shù)據(jù)分析中,若要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理,以下哪種方法較為常見(jiàn)?()A.Z-score標(biāo)準(zhǔn)化B.Min-Max標(biāo)準(zhǔn)化C.小數(shù)定標(biāo)標(biāo)準(zhǔn)化D.以上都是12、當(dāng)分析一個(gè)社交媒體平臺(tái)上用戶的行為數(shù)據(jù),包括發(fā)布內(nèi)容的頻率、互動(dòng)情況、關(guān)注對(duì)象等,以了解用戶的興趣和社交網(wǎng)絡(luò)結(jié)構(gòu)??紤]到數(shù)據(jù)的多樣性和復(fù)雜性,以下哪種數(shù)據(jù)可視化方式可能有助于更直觀地呈現(xiàn)分析結(jié)果?()A.柱狀圖B.折線圖C.餅圖D.社交網(wǎng)絡(luò)圖13、在進(jìn)行數(shù)據(jù)可視化時(shí),選擇合適的圖表類(lèi)型要根據(jù)數(shù)據(jù)的特點(diǎn)和分析目的。假設(shè)你要展示不同年齡段人群的收入分布情況,以下關(guān)于圖表選擇的建議,哪一項(xiàng)是最恰當(dāng)?shù)模浚ǎ〢.使用折線圖,體現(xiàn)收入隨年齡的變化趨勢(shì)B.運(yùn)用柱狀圖,比較不同年齡段的收入水平C.選擇餅圖,展示各年齡段收入在總體中的占比D.采用雷達(dá)圖,綜合展示多個(gè)相關(guān)變量14、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)和融合時(shí),需要確保數(shù)據(jù)的一致性和準(zhǔn)確性。假設(shè)你有來(lái)自不同系統(tǒng)的銷(xiāo)售數(shù)據(jù)和庫(kù)存數(shù)據(jù),要進(jìn)行關(guān)聯(lián)分析。以下關(guān)于數(shù)據(jù)關(guān)聯(lián)方法的選擇,哪一項(xiàng)是最需要注意的?()A.根據(jù)共同的主鍵或標(biāo)識(shí)符進(jìn)行精確匹配關(guān)聯(lián)B.使用模糊匹配算法,允許一定程度的差異進(jìn)行關(guān)聯(lián)C.不進(jìn)行任何預(yù)處理,直接將數(shù)據(jù)合并,期望自動(dòng)關(guān)聯(lián)D.隨機(jī)選擇一種關(guān)聯(lián)方法,不考慮數(shù)據(jù)的特點(diǎn)15、假設(shè)我們要預(yù)測(cè)未來(lái)一段時(shí)間內(nèi)的股票價(jià)格,以下哪種數(shù)據(jù)分析方法可能不太適用?()A.時(shí)間序列分析B.線性回歸C.聚類(lèi)分析D.神經(jīng)網(wǎng)絡(luò)16、在數(shù)據(jù)分析中,模型的可解釋性對(duì)于理解和信任模型結(jié)果很重要。假設(shè)你建立了一個(gè)復(fù)雜的機(jī)器學(xué)習(xí)模型,以下關(guān)于提高模型可解釋性的方法,哪一項(xiàng)是最有效的?()A.使用黑盒模型,不關(guān)注可解釋性B.繪制模型的決策樹(shù),直觀展示決策過(guò)程C.只關(guān)注模型的預(yù)測(cè)準(zhǔn)確率,不考慮解釋性D.對(duì)模型的內(nèi)部工作原理不做任何解釋?zhuān)層脩糇孕欣斫?7、關(guān)于數(shù)據(jù)分析中的多變量分析,假設(shè)要同時(shí)研究多個(gè)自變量對(duì)因變量的影響。以下哪種方法可以幫助我們理解變量之間的復(fù)雜關(guān)系和交互作用?()A.多元線性回歸B.因子分析,提取公共因子C.偏最小二乘回歸D.只研究單個(gè)變量與因變量的關(guān)系18、在數(shù)據(jù)分析中,數(shù)據(jù)集成用于將多個(gè)數(shù)據(jù)源的數(shù)據(jù)合并在一起。假設(shè)要集成來(lái)自不同數(shù)據(jù)庫(kù)的銷(xiāo)售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)集成的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.需要解決數(shù)據(jù)格式不一致、字段命名差異等問(wèn)題B.可以使用ETL(Extract,Transform,Load)工具來(lái)實(shí)現(xiàn)數(shù)據(jù)的抽取、轉(zhuǎn)換和加載C.數(shù)據(jù)集成過(guò)程中可能會(huì)引入重復(fù)數(shù)據(jù)和數(shù)據(jù)沖突,需要進(jìn)行處理D.數(shù)據(jù)集成可以隨意進(jìn)行,不需要考慮數(shù)據(jù)的質(zhì)量和一致性19、在進(jìn)行數(shù)據(jù)分析時(shí),有時(shí)候需要對(duì)多個(gè)數(shù)據(jù)集進(jìn)行合并和連接。假設(shè)我們有兩個(gè)數(shù)據(jù)集,分別包含客戶的基本信息和購(gòu)買(mǎi)記錄,以下哪種連接方式可以根據(jù)共同的客戶ID將兩個(gè)數(shù)據(jù)集合并?()A.內(nèi)連接B.外連接C.左連接D.以上都是20、在數(shù)據(jù)分析中,以下哪種方法可以用于降低數(shù)據(jù)的維度同時(shí)保持?jǐn)?shù)據(jù)的局部結(jié)構(gòu)?()A.t-SNE算法B.MDS算法C.UMAP算法D.以上都是二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)闡述數(shù)據(jù)倉(cāng)庫(kù)中的元數(shù)據(jù)管理,說(shuō)明元數(shù)據(jù)的定義、類(lèi)型和重要性,以及如何有效地管理元數(shù)據(jù)。2、(本題5分)解釋什么是數(shù)據(jù)融合,說(shuō)明其在多源數(shù)據(jù)整合中的重要性,并列舉至少兩種數(shù)據(jù)融合的方法和應(yīng)用場(chǎng)景。3、(本題5分)闡述數(shù)據(jù)挖掘中的圖像挖掘,包括圖像分類(lèi)、目標(biāo)檢測(cè)等,說(shuō)明其技術(shù)和應(yīng)用場(chǎng)景。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某電商平臺(tái)保存了不同促銷(xiāo)活動(dòng)期間的用戶消費(fèi)行為數(shù)據(jù)、商品銷(xiāo)量變化、營(yíng)銷(xiāo)成本等。研究怎樣借助這些數(shù)據(jù)評(píng)估促銷(xiāo)活動(dòng)的效果和投資回報(bào)率。2、(本題5分)某農(nóng)產(chǎn)品企業(yè)積累了農(nóng)產(chǎn)品的種植數(shù)據(jù)、銷(xiāo)售數(shù)據(jù)、市場(chǎng)價(jià)格波動(dòng)等信息。研究怎樣根據(jù)這些數(shù)據(jù)進(jìn)行種植規(guī)劃和市場(chǎng)風(fēng)險(xiǎn)預(yù)測(cè)。3、(本題5分)某在線音樂(lè)平臺(tái)的古典音樂(lè)類(lèi)目擁有用戶數(shù)據(jù),包括收聽(tīng)時(shí)長(zhǎng)、曲目、演奏家、收藏行為等。分析用戶對(duì)不同演奏家的曲目收聽(tīng)偏好和收藏特點(diǎn)。4、(本題5分)某超市的進(jìn)口食品類(lèi)目記錄了銷(xiāo)售數(shù)據(jù),包括食品種類(lèi)、產(chǎn)地、價(jià)格、促銷(xiāo)活動(dòng)、消費(fèi)者收入水平等。分析不同產(chǎn)地和消費(fèi)者收入水平對(duì)進(jìn)口食品銷(xiāo)售和促銷(xiāo)活動(dòng)效果的影響。5、(本題5分)某電商直播

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論