![重慶第二師范學(xué)院《計(jì)算機(jī)輔助設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷_第1頁(yè)](http://file4.renrendoc.com/view9/M02/18/2B/wKhkGWdZEQ-AG8PIAAMISwr9fqM080.jpg)
![重慶第二師范學(xué)院《計(jì)算機(jī)輔助設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷_第2頁(yè)](http://file4.renrendoc.com/view9/M02/18/2B/wKhkGWdZEQ-AG8PIAAMISwr9fqM0802.jpg)
![重慶第二師范學(xué)院《計(jì)算機(jī)輔助設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷_第3頁(yè)](http://file4.renrendoc.com/view9/M02/18/2B/wKhkGWdZEQ-AG8PIAAMISwr9fqM0803.jpg)
![重慶第二師范學(xué)院《計(jì)算機(jī)輔助設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷_第4頁(yè)](http://file4.renrendoc.com/view9/M02/18/2B/wKhkGWdZEQ-AG8PIAAMISwr9fqM0804.jpg)
![重慶第二師范學(xué)院《計(jì)算機(jī)輔助設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷_第5頁(yè)](http://file4.renrendoc.com/view9/M02/18/2B/wKhkGWdZEQ-AG8PIAAMISwr9fqM0805.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共3頁(yè)重慶第二師范學(xué)院
《計(jì)算機(jī)輔助設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計(jì)算機(jī)視覺在安防領(lǐng)域的應(yīng)用可以加強(qiáng)監(jiān)控和預(yù)警能力。假設(shè)要通過攝像頭實(shí)時(shí)監(jiān)測(cè)公共場(chǎng)所的異常行為,以下關(guān)于安防計(jì)算機(jī)視覺應(yīng)用的描述,正確的是:()A.簡(jiǎn)單的運(yùn)動(dòng)檢測(cè)算法就能準(zhǔn)確識(shí)別各種異常行為B.不考慮人群密度和環(huán)境背景對(duì)異常行為檢測(cè)的影響C.結(jié)合深度學(xué)習(xí)和行為分析模型可以提高異常行為檢測(cè)的準(zhǔn)確性和及時(shí)性D.安防領(lǐng)域的計(jì)算機(jī)視覺系統(tǒng)不需要考慮隱私保護(hù)和數(shù)據(jù)安全問題2、在計(jì)算機(jī)視覺中,圖像超分辨率重建是提高圖像分辨率和質(zhì)量的技術(shù)。以下關(guān)于圖像超分辨率重建的敘述,不正確的是()A.圖像超分辨率重建可以通過插值、基于模型的方法或深度學(xué)習(xí)方法來(lái)實(shí)現(xiàn)B.深度學(xué)習(xí)方法在圖像超分辨率重建中能夠生成更清晰、逼真的細(xì)節(jié)C.圖像超分辨率重建在醫(yī)學(xué)圖像、衛(wèi)星圖像和監(jiān)控圖像等領(lǐng)域有重要的應(yīng)用D.圖像超分辨率重建可以無(wú)限制地提高圖像的分辨率,不受原始圖像信息的限制3、計(jì)算機(jī)視覺在自動(dòng)駕駛領(lǐng)域有重要應(yīng)用。假設(shè)要開發(fā)一個(gè)能夠識(shí)別道路標(biāo)志的系統(tǒng),以下關(guān)于應(yīng)對(duì)不同光照條件的策略,哪一項(xiàng)是最為有效的?()A.使用固定的閾值對(duì)圖像進(jìn)行二值化處理B.采用自適應(yīng)的圖像增強(qiáng)算法,根據(jù)光照情況調(diào)整圖像C.忽略光照變化,依靠模型的泛化能力D.只在特定的光照條件下收集訓(xùn)練數(shù)據(jù)4、計(jì)算機(jī)視覺在安防監(jiān)控領(lǐng)域有重要應(yīng)用。假設(shè)要通過攝像頭監(jiān)控一個(gè)公共場(chǎng)所,以下關(guān)于計(jì)算機(jī)視覺在安防監(jiān)控中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以實(shí)時(shí)檢測(cè)異常行為,如人群聚集、奔跑等B.能夠?qū)θ藛T進(jìn)行身份識(shí)別和認(rèn)證C.計(jì)算機(jī)視覺系統(tǒng)可以獨(dú)立完成所有的安防監(jiān)控任務(wù),不需要人工干預(yù)D.與其他安防設(shè)備和系統(tǒng)集成,提高整體的安全性和防范能力5、在計(jì)算機(jī)視覺的圖像分割任務(wù)中,假設(shè)要對(duì)細(xì)胞圖像進(jìn)行精細(xì)分割。以下關(guān)于模型選擇的考慮因素,哪一項(xiàng)是不準(zhǔn)確的?()A.模型對(duì)細(xì)胞邊界的捕捉能力B.模型在小樣本數(shù)據(jù)上的泛化能力C.模型的訓(xùn)練時(shí)間和計(jì)算資源需求D.模型的知名度和在學(xué)術(shù)圈的引用次數(shù)6、計(jì)算機(jī)視覺中的特征提取是非常關(guān)鍵的步驟。假設(shè)要從一組圖像中提取具有代表性的特征,以下關(guān)于特征提取方法的描述,正確的是:()A.手工設(shè)計(jì)的特征,如SIFT和HOG,在任何情況下都比深度學(xué)習(xí)自動(dòng)學(xué)習(xí)的特征更有效B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動(dòng)學(xué)習(xí)到圖像的多層次特征,具有很強(qiáng)的表達(dá)能力C.特征提取的結(jié)果對(duì)后續(xù)的圖像分類和目標(biāo)檢測(cè)任務(wù)沒有影響D.特征提取只需要考慮圖像的局部信息,全局信息不重要7、計(jì)算機(jī)視覺中的三維重建技術(shù)可以從多幅圖像中恢復(fù)物體的三維形狀。假設(shè)要對(duì)一個(gè)古老建筑進(jìn)行三維重建。以下關(guān)于三維重建方法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過立體視覺的方法,從不同角度拍攝的圖像中計(jì)算深度信息B.基于結(jié)構(gòu)光的方法能夠快速獲取物體表面的三維點(diǎn)云數(shù)據(jù)C.深度學(xué)習(xí)在三維重建中也有應(yīng)用,能夠?qū)W習(xí)從二維圖像到三維形狀的映射D.三維重建的結(jié)果總是非常精確,與真實(shí)物體的形狀完全一致8、計(jì)算機(jī)視覺中的語(yǔ)義分割任務(wù)旨在為圖像中的每個(gè)像素分配一個(gè)類別標(biāo)簽。假設(shè)要對(duì)醫(yī)學(xué)圖像中的病變區(qū)域進(jìn)行精確分割,以下哪種技術(shù)可能對(duì)提高分割精度有較大幫助?()A.使用更深的卷積神經(jīng)網(wǎng)絡(luò)架構(gòu)B.引入多尺度特征融合C.增加訓(xùn)練數(shù)據(jù)中的噪聲D.減少網(wǎng)絡(luò)中的參數(shù)數(shù)量9、計(jì)算機(jī)視覺在醫(yī)學(xué)影像分析中的應(yīng)用有助于輔助醫(yī)生進(jìn)行診斷和治療。假設(shè)要分析一張腦部CT圖像,以下關(guān)于醫(yī)學(xué)影像分析中的計(jì)算機(jī)視覺應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.可以通過分割腦組織、檢測(cè)病變區(qū)域等方法,為醫(yī)生提供定量的分析結(jié)果B.深度學(xué)習(xí)模型能夠自動(dòng)學(xué)習(xí)醫(yī)學(xué)影像中的特征,輔助醫(yī)生發(fā)現(xiàn)潛在的疾病C.計(jì)算機(jī)視覺在醫(yī)學(xué)影像分析中的應(yīng)用需要遵循嚴(yán)格的醫(yī)學(xué)倫理和法規(guī)D.計(jì)算機(jī)視覺系統(tǒng)可以完全替代醫(yī)生的診斷,不需要醫(yī)生的進(jìn)一步審查和判斷10、在計(jì)算機(jī)視覺的圖像配準(zhǔn)任務(wù)中,將不同視角或時(shí)間拍攝的圖像進(jìn)行對(duì)齊,以下哪種變換模型可能適用于具有較大形變的圖像配準(zhǔn)?()A.剛性變換B.仿射變換C.投影變換D.非線性變換11、計(jì)算機(jī)視覺中的圖像分割任務(wù)旨在將圖像分割成不同的區(qū)域。假設(shè)要對(duì)一張風(fēng)景圖片進(jìn)行分割,區(qū)分天空、陸地和水面。以下關(guān)于圖像分割方法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.基于閾值的分割方法簡(jiǎn)單快速,但對(duì)于復(fù)雜圖像效果不佳B.區(qū)域生長(zhǎng)法從種子點(diǎn)開始,逐步合并相似的區(qū)域C.深度學(xué)習(xí)中的全卷積網(wǎng)絡(luò)(FCN)在圖像分割中表現(xiàn)出色,能夠生成精確的分割結(jié)果D.圖像分割的結(jié)果總是清晰明確,不存在模糊或錯(cuò)誤的邊界12、目標(biāo)檢測(cè)是計(jì)算機(jī)視覺中的常見任務(wù),例如在監(jiān)控視頻中檢測(cè)行人或車輛。假設(shè)我們要開發(fā)一個(gè)目標(biāo)檢測(cè)系統(tǒng),以下關(guān)于目標(biāo)檢測(cè)算法的描述,哪一項(xiàng)是不正確的?()A.基于區(qū)域建議的方法,如R-CNN系列算法,通過生成候選區(qū)域并對(duì)其進(jìn)行分類和定位來(lái)實(shí)現(xiàn)目標(biāo)檢測(cè)B.一階段目標(biāo)檢測(cè)算法,如YOLO和SSD,直接在圖像上進(jìn)行目標(biāo)的分類和定位,速度相對(duì)較快C.目標(biāo)檢測(cè)算法的性能通常用準(zhǔn)確率、召回率和平均精度均值(mAP)等指標(biāo)來(lái)評(píng)估D.目標(biāo)檢測(cè)算法的精度和速度是相互獨(dú)立的,提高精度不會(huì)影響速度,反之亦然13、在計(jì)算機(jī)視覺中,以下哪種方法常用于圖像的顯著目標(biāo)檢測(cè)中的高層語(yǔ)義信息利用?()A.深度學(xué)習(xí)B.圖模型C.注意力機(jī)制D.以上都是14、在計(jì)算機(jī)視覺的圖像增強(qiáng)任務(wù)中,假設(shè)要提高一張低光照?qǐng)D像的質(zhì)量。以下關(guān)于圖像增強(qiáng)方法的描述,正確的是:()A.直方圖均衡化能夠均勻分布圖像的灰度級(jí),但可能會(huì)導(dǎo)致細(xì)節(jié)丟失B.基于濾波的方法可以有效地去除噪聲,但同時(shí)也會(huì)模糊圖像的邊緣C.伽馬校正只適用于校正過亮的圖像,對(duì)于低光照?qǐng)D像效果不佳D.所有的圖像增強(qiáng)方法都能夠在不引入任何失真的情況下提高圖像質(zhì)量15、在計(jì)算機(jī)視覺的場(chǎng)景理解任務(wù)中,假設(shè)要理解一個(gè)室內(nèi)場(chǎng)景的布局和物體關(guān)系。以下關(guān)于利用深度學(xué)習(xí)模型的方法,哪一項(xiàng)是不太恰當(dāng)?shù)模浚ǎ〢.使用卷積神經(jīng)網(wǎng)絡(luò)(CNN)提取圖像特征B.運(yùn)用循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)處理場(chǎng)景的序列信息C.直接使用未經(jīng)訓(xùn)練的神經(jīng)網(wǎng)絡(luò),期望其自動(dòng)學(xué)習(xí)場(chǎng)景理解D.結(jié)合CNN和RNN,構(gòu)建端到端的場(chǎng)景理解模型16、計(jì)算機(jī)視覺中的人臉識(shí)別技術(shù)應(yīng)用廣泛。假設(shè)要在一個(gè)門禁系統(tǒng)中實(shí)現(xiàn)準(zhǔn)確的人臉識(shí)別,以下關(guān)于人臉識(shí)別方法的描述,正確的是:()A.基于幾何特征的人臉識(shí)別方法對(duì)姿態(tài)和光照變化具有很強(qiáng)的魯棒性B.基于模板匹配的方法能夠處理大規(guī)模的人臉數(shù)據(jù)庫(kù),并且識(shí)別速度快C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在人臉識(shí)別中能夠?qū)W習(xí)到更具判別性的特征,但容易受到數(shù)據(jù)偏差的影響D.人臉識(shí)別系統(tǒng)一旦訓(xùn)練完成,就不需要更新和優(yōu)化,能夠一直保持高準(zhǔn)確率17、計(jì)算機(jī)視覺在人臉識(shí)別領(lǐng)域取得了顯著進(jìn)展。假設(shè)要開發(fā)一個(gè)人臉識(shí)別系統(tǒng),以下關(guān)于人臉識(shí)別技術(shù)的描述,哪一項(xiàng)是不正確的?()A.可以通過提取人臉的幾何特征、紋理特征或深度學(xué)習(xí)特征進(jìn)行識(shí)別B.人臉識(shí)別系統(tǒng)通常需要進(jìn)行活體檢測(cè),以防止使用照片或視頻等欺詐手段C.大規(guī)模的人臉數(shù)據(jù)集和深度學(xué)習(xí)模型的結(jié)合,大大提高了人臉識(shí)別的準(zhǔn)確率D.人臉識(shí)別技術(shù)在任何光照條件、姿態(tài)變化和表情變化下都能準(zhǔn)確識(shí)別,不受這些因素的影響18、在計(jì)算機(jī)視覺中,深度估計(jì)是確定場(chǎng)景中物體距離相機(jī)的距離。以下關(guān)于深度估計(jì)的說(shuō)法,錯(cuò)誤的是()A.可以通過立體視覺、結(jié)構(gòu)光或飛行時(shí)間等技術(shù)來(lái)獲取深度信息B.深度學(xué)習(xí)方法在單目深度估計(jì)中取得了顯著進(jìn)展C.深度估計(jì)對(duì)于三維重建、虛擬現(xiàn)實(shí)和增強(qiáng)現(xiàn)實(shí)等應(yīng)用具有重要意義D.深度估計(jì)的結(jié)果總是非常精確,不需要進(jìn)行后處理和優(yōu)化19、在計(jì)算機(jī)視覺的場(chǎng)景理解任務(wù)中,需要對(duì)整個(gè)圖像場(chǎng)景進(jìn)行分析和解釋。假設(shè)我們有一張城市街道的圖像,要理解其中的道路、建筑物、車輛和行人之間的關(guān)系。以下哪種方法能夠提供更全面和深入的場(chǎng)景理解?()A.基于對(duì)象檢測(cè)和分類的方法B.基于語(yǔ)義分割和圖模型的方法C.基于深度學(xué)習(xí)的場(chǎng)景解析網(wǎng)絡(luò)D.基于特征匹配和聚類的方法20、在計(jì)算機(jī)視覺的圖像增強(qiáng)任務(wù)中,旨在改善圖像的質(zhì)量。假設(shè)一張低光照條件下拍攝的照片需要增強(qiáng)。以下關(guān)于圖像增強(qiáng)方法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過直方圖均衡化方法增強(qiáng)圖像的對(duì)比度B.基于濾波的方法能夠去除圖像中的噪聲,同時(shí)增強(qiáng)細(xì)節(jié)C.圖像增強(qiáng)可以無(wú)限制地提高圖像的質(zhì)量,不存在過度增強(qiáng)的問題D.深度學(xué)習(xí)中的生成對(duì)抗網(wǎng)絡(luò)(GAN)也可以用于圖像增強(qiáng)21、計(jì)算機(jī)視覺中的圖像超分辨率重建旨在提高圖像的分辨率。假設(shè)要將一張低分辨率的衛(wèi)星圖像重建為高分辨率圖像,以下關(guān)于模型訓(xùn)練的挑戰(zhàn),哪一項(xiàng)是最為突出的?()A.缺乏足夠的高分辨率衛(wèi)星圖像數(shù)據(jù)用于訓(xùn)練B.模型的訓(xùn)練時(shí)間過長(zhǎng),難以在短時(shí)間內(nèi)得到結(jié)果C.難以評(píng)估重建后的圖像質(zhì)量,沒有明確的標(biāo)準(zhǔn)D.計(jì)算資源需求過大,普通計(jì)算機(jī)難以承受22、在計(jì)算機(jī)視覺中,圖像去霧是提高有霧圖像質(zhì)量的技術(shù)。以下關(guān)于圖像去霧的描述,不準(zhǔn)確的是()A.圖像去霧可以基于物理模型或深度學(xué)習(xí)方法來(lái)實(shí)現(xiàn)B.深度學(xué)習(xí)方法在圖像去霧中能夠有效地恢復(fù)圖像的細(xì)節(jié)和顏色C.圖像去霧只對(duì)輕度有霧的圖像有效,對(duì)于濃霧圖像效果不佳D.圖像去霧可以提高圖像的清晰度和可視性,有助于后續(xù)的處理和分析23、在計(jì)算機(jī)視覺的圖像檢索任務(wù)中,需要根據(jù)用戶提供的示例圖像從大規(guī)模圖像數(shù)據(jù)庫(kù)中找到相似的圖像。假設(shè)要構(gòu)建一個(gè)高效的圖像搜索引擎,能夠快速準(zhǔn)確地返回相關(guān)圖像。以下哪種圖像檢索方法在處理大規(guī)模數(shù)據(jù)時(shí)性能更優(yōu)?()A.基于內(nèi)容的圖像檢索B.基于文本標(biāo)注的圖像檢索C.基于哈希編碼的圖像檢索D.基于深度學(xué)習(xí)特征的圖像檢索24、在計(jì)算機(jī)視覺的應(yīng)用于工業(yè)檢測(cè)中,需要檢測(cè)產(chǎn)品表面的缺陷和瑕疵。假設(shè)我們要檢測(cè)手機(jī)屏幕上的劃痕和亮點(diǎn),以下哪種方法能夠?qū)崿F(xiàn)快速、準(zhǔn)確的缺陷檢測(cè),并且適應(yīng)不同的產(chǎn)品批次和生產(chǎn)環(huán)境?()A.基于機(jī)器視覺的傳統(tǒng)檢測(cè)方法,結(jié)合閾值和形態(tài)學(xué)操作B.基于深度學(xué)習(xí)的目標(biāo)檢測(cè)算法,針對(duì)缺陷進(jìn)行訓(xùn)練C.基于紋理分析和模式識(shí)別的方法D.基于光學(xué)原理和物理模型的檢測(cè)方法25、在計(jì)算機(jī)視覺的應(yīng)用于自動(dòng)駕駛領(lǐng)域,需要實(shí)時(shí)檢測(cè)道路上的交通標(biāo)志和標(biāo)線。假設(shè)車輛在高速行駛中,以下哪種技術(shù)能夠快速準(zhǔn)確地檢測(cè)到各種交通標(biāo)志,并且對(duì)光照變化和遮擋具有較強(qiáng)的魯棒性?()A.基于顏色和形狀特征的檢測(cè)方法B.基于深度學(xué)習(xí)的檢測(cè)方法,結(jié)合多尺度特征C.基于邊緣檢測(cè)和形態(tài)學(xué)操作的方法D.基于模板匹配和特征點(diǎn)匹配的方法二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)解釋計(jì)算機(jī)視覺在停車場(chǎng)管理中的技術(shù)。2、(本題5分)說(shuō)明計(jì)算機(jī)視覺在海洋生態(tài)監(jiān)測(cè)中的作用。3、(本題5分)簡(jiǎn)述計(jì)算機(jī)視覺在船舶航行中的應(yīng)用。4、(本題5分)簡(jiǎn)述計(jì)算機(jī)視覺中圖像分類的任務(wù)和方法。三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)分析亞馬遜的智能家居產(chǎn)品廣告設(shè)計(jì),從產(chǎn)品功能展示、便捷操作到品牌形象傳達(dá)。討論其如何吸引消費(fèi)者打造智能生活。2、(本題5分)剖析某電視劇的周邊產(chǎn)品設(shè)計(jì),討論其如何通過視覺元素與電視劇主題相結(jié)合并吸引粉絲購(gòu)買。3、(本題5分)以某城市的公交站臺(tái)廣告為例,分析其在設(shè)計(jì)上如何
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 特殊人群的科學(xué)運(yùn)動(dòng)與健康管理
- 幼兒園的德育教育工作方案5
- 環(huán)氧涂料行業(yè)的投資價(jià)值及風(fēng)險(xiǎn)研究
- 手動(dòng)葫蘆吊裝施工方案1
- 現(xiàn)代企業(yè)管理中的危機(jī)管理與領(lǐng)導(dǎo)力
- 國(guó)慶節(jié)學(xué)?;顒?dòng)方案簡(jiǎn)短
- Module 1 Unit 1 Did you come back yesterday?(說(shuō)課稿)-2024-2025學(xué)年外研版(三起)英語(yǔ)五年級(jí)上冊(cè)
- 1 古詩(shī)詞三首(說(shuō)課稿)-2023-2024學(xué)年統(tǒng)編版語(yǔ)文四年級(jí)下冊(cè)001
- 2024年四年級(jí)英語(yǔ)上冊(cè) Unit 2 My schoolbag The first period說(shuō)課稿 人教PEP
- Unit 1 Science and Scientists Listening and Speaking說(shuō)課稿+ 學(xué)案 高中英語(yǔ)同步備課系列人教版2019選擇性必修第二冊(cè)
- 金鎖記優(yōu)秀課件
- 人教版高中英語(yǔ)必修一單詞表(默寫版)
- 格式塔心理學(xué)與文藝心理學(xué)
- 海德堡HRT共焦激光角膜顯微鏡
- (汽車制造論文)機(jī)器人在汽車制造中應(yīng)用
- 幼兒園手工教學(xué)中教師指導(dǎo)行為研究-以自貢市幼兒園為例
- 初中物理實(shí)驗(yàn)教學(xué)
- 《智能投顧 大數(shù)據(jù)智能驅(qū)動(dòng)投顧創(chuàng)新》讀書筆記思維導(dǎo)圖
- 英語(yǔ)詞匯量測(cè)試附答案
- 企業(yè)應(yīng)急管理及能力提升培訓(xùn)課件精選
- 吲哚菁綠血管造影檢查知情同意書
評(píng)論
0/150
提交評(píng)論