版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共3頁重慶第二師范學院《建筑制圖與測繪》
2021-2022學年第一學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺中,目標檢測是一項重要的任務。假設要開發(fā)一個能夠在城市交通場景中檢測車輛和行人的系統(tǒng)。以下關于目標檢測算法的選擇,哪一項是需要重點考慮的因素?()A.算法的檢測速度,以滿足實時性要求B.算法在小目標檢測上的性能,因為車輛和行人在圖像中可能較小C.算法的模型復雜度,越復雜的模型效果越好D.算法是否開源,開源的算法更易于使用2、在計算機視覺中,以下哪種技術常用于圖像的超分辨率重建的上采樣方法?()A.反卷積B.亞像素卷積C.最近鄰插值D.以上都是3、在計算機視覺的圖像生成任務中,除了生成新的圖像,還可以對已有圖像進行風格轉換。假設我們要將一張照片轉換為油畫風格,以下哪種方法能夠實現(xiàn)逼真的風格轉換效果?()A.基于圖像濾波和變換的方法B.基于深度學習的風格遷移算法,如CycleGANC.基于圖像融合和合成的方法D.基于顏色映射和紋理合成的方法4、在計算機視覺的視頻理解任務中,例如理解一段體育比賽視頻中的精彩瞬間和戰(zhàn)術,需要對視頻中的時空信息進行有效建模。以下哪種方法在時空建模方面可能具有優(yōu)勢?()A.3D卷積神經網絡B.長短時記憶網絡C.注意力機制D.以上都是5、在計算機視覺中,特征提取是非常關鍵的一步。假設我們要從圖像中提取有意義的特征,用于后續(xù)的處理和分析,以下關于特征提取方法的描述,哪一項是不正確的?()A.SIFT(尺度不變特征變換)和SURF(加速穩(wěn)健特征)是常用的局部特征描述子,對圖像的旋轉、縮放和光照變化具有一定的不變性B.HOG(方向梯度直方圖)特征通過計算圖像局部區(qū)域的梯度方向分布來描述圖像,常用于行人檢測C.深度學習中的自動特征提取,例如通過卷積神經網絡學習到的特征,比手工設計的特征更具有代表性和判別力D.特征提取的結果對后續(xù)的圖像處理任務影響不大,不同的特征提取方法可以得到相似的處理效果6、當利用計算機視覺進行圖像超分辨率重建任務,將低分辨率圖像恢復為高分辨率圖像,以下哪種深度學習模型可能在重建效果上表現(xiàn)出色?()A.SRCNNB.ESPCNC.DRCND.以上都是7、在計算機視覺的圖像生成任務中,假設要生成逼真的人臉圖像。以下關于生成模型的架構選擇,哪一項是需要特別關注的?()A.選擇傳統(tǒng)的多層感知機(MLP)架構B.采用生成對抗網絡(GAN)架構,通過對抗訓練生成高質量圖像C.運用卷積神經網絡(CNN)架構,但不使用池化層D.構建循環(huán)神經網絡(RNN)架構,處理圖像的序列信息8、計算機視覺中的圖像去噪旨在去除圖像中的噪聲,恢復清晰的圖像。假設要處理一張受到嚴重噪聲污染的天文圖像,以下關于去噪算法的選擇,哪一項是需要謹慎考慮的?()A.選擇基于濾波的去噪算法,如中值濾波B.采用基于深度學習的去噪算法,如自編碼器C.只考慮去噪效果,不關心圖像細節(jié)的保留D.根據噪聲的類型和強度選擇合適的去噪算法9、在計算機視覺的目標識別任務中,假設目標物體被部分遮擋,以下哪種模型架構可能更有助于恢復被遮擋部分的信息?()A.多層感知機(MLP)B.卷積神經網絡(CNN)C.循環(huán)神經網絡(RNN)D.注意力機制(AttentionMechanism)10、計算機視覺中的特征提取是非常關鍵的步驟。假設要從一組圖像中提取具有代表性的特征,以下關于特征提取方法的描述,正確的是:()A.手工設計的特征,如SIFT和HOG,在任何情況下都比深度學習自動學習的特征更有效B.深度學習中的卷積神經網絡能夠自動學習到圖像的多層次特征,具有很強的表達能力C.特征提取的結果對后續(xù)的圖像分類和目標檢測任務沒有影響D.特征提取只需要考慮圖像的局部信息,全局信息不重要11、假設我們要開發(fā)一個計算機視覺系統(tǒng),用于檢測生產線上產品的表面缺陷。由于產品的種類繁多、缺陷類型復雜,以下哪種方法可能需要更多的計算資源和時間來訓練模型?()A.基于傳統(tǒng)機器學習的方法B.基于淺層神經網絡的方法C.基于深度學習的方法D.基于模板匹配的方法12、對于圖像的語義理解任務,假設要理解一張圖像所表達的場景和事件,例如判斷一張圖像是在舉行婚禮還是在舉辦音樂會。圖像中的信息可能比較隱晦和復雜。以下哪種方法可能有助于提高語義理解的準確性?()A.構建圖像的語義圖,分析物體之間的關系B.只關注圖像中的主要物體,忽略背景信息C.對圖像進行簡單的分類,不進行深入的語義分析D.隨機猜測圖像的語義13、在計算機視覺中,以下哪種方法常用于圖像的顯著目標檢測中的高層語義信息利用?()A.深度學習B.圖模型C.注意力機制D.以上都是14、計算機視覺中的語義分割任務旨在為圖像中的每個像素分配一個類別標簽。假設要對醫(yī)學圖像中的病變區(qū)域進行精確分割,以下哪種技術可能對提高分割精度有較大幫助?()A.使用更深的卷積神經網絡架構B.引入多尺度特征融合C.增加訓練數據中的噪聲D.減少網絡中的參數數量15、在計算機視覺的目標跟蹤任務中,需要在連續(xù)的圖像幀中持續(xù)跟蹤一個特定的目標。假設要跟蹤一個在運動場上快速移動且形狀變化的運動員,同時存在其他相似物體的干擾。以下哪種目標跟蹤算法在這種具有挑戰(zhàn)性的場景下表現(xiàn)更佳?()A.基于卡爾曼濾波的跟蹤B.基于粒子濾波的跟蹤C.基于深度學習的跟蹤D.基于均值漂移的跟蹤16、計算機視覺在智能交通系統(tǒng)中的應用可以優(yōu)化交通流量和提高安全性。假設要通過計算機視覺監(jiān)測道路上的車輛擁堵情況。以下關于計算機視覺在智能交通中的描述,哪一項是錯誤的?()A.可以通過車輛檢測和計數來評估道路的擁堵程度B.能夠識別車輛的類型和行駛方向,為交通管理提供數據支持C.計算機視覺在智能交通中的應用完全不受惡劣天氣和光照條件的影響D.可以與交通信號控制系統(tǒng)聯(lián)動,實現(xiàn)自適應的交通信號配時17、在計算機視覺的三維重建任務中,我們需要從多幅二維圖像中恢復物體的三維結構。假設我們只有少量的、視角有限的圖像,以下哪種重建方法可能面臨較大挑戰(zhàn)?()A.基于立體視覺的重建方法B.基于運動恢復結構(StructurefromMotion)的方法C.利用激光掃描數據進行重建D.基于模型擬合的重建方法18、計算機視覺中的目標計數是估計圖像或視頻中目標的數量。假設要在一張人群圖像中準確計數人數,以下關于目標計數方法的描述,正確的是:()A.基于檢測的計數方法通過檢測每個個體來實現(xiàn)計數,對密集場景效果好B.基于回歸的計數方法直接預測目標數量,計算速度快但精度較低C.深度學習中的注意力機制在目標計數中沒有作用,不能提高計數準確性D.目標計數只需要考慮目標的外觀特征,不需要考慮圖像的上下文信息19、計算機視覺中的語義理解旨在理解圖像或視頻中的高層語義信息。以下關于語義理解的說法,不正確的是()A.語義理解需要將圖像中的物體、場景和事件等與先驗知識進行關聯(lián)和解釋B.知識圖譜可以為語義理解提供豐富的語義信息和關系C.語義理解在圖像描述生成、問答系統(tǒng)等任務中發(fā)揮著重要作用D.語義理解已經達到了非常完美的程度,能夠準確理解任何復雜的圖像或視頻內容20、計算機視覺在安防監(jiān)控領域有著廣泛的應用。假設一個商場需要通過監(jiān)控攝像頭進行人員異常行為檢測。以下關于安防監(jiān)控中的計算機視覺的描述,哪一項是不正確的?()A.可以實時監(jiān)測人群的流動情況,發(fā)現(xiàn)擁堵和異常聚集B.能夠識別人員的打斗、摔倒等異常行為,并及時發(fā)出警報C.計算機視覺系統(tǒng)能夠完全取代人工監(jiān)控,不需要人類保安的參與D.可以與其他安防設備(如門禁系統(tǒng))聯(lián)動,提高安防水平二、簡答題(本大題共5個小題,共25分)1、(本題5分)簡述圖像的直方圖規(guī)定化方法。2、(本題5分)計算機視覺中如何進行武器裝備檢測和維護?3、(本題5分)解釋計算機視覺在氣象預測中的應用。4、(本題5分)簡述圖像的飽和度調整方法。5、(本題5分)計算機視覺中如何利用強化學習進行目標搜索?三、分析題(本大題共5個小題,共25分)1、(本題5分)一家高端珠寶品牌的櫥窗展示設計華麗精致,燈光效果出色。請剖析此櫥窗設計如何展示珠寶的品質和工藝,如何吸引路人的目光,以及在營造奢華氛圍和提升品牌形象方面的策略。2、(本題5分)某旅游目的地的宣傳冊設計通過精彩的攝影作品和精心編排的文字,展現(xiàn)了其迷人的風光和獨特的文化。請分析宣傳冊在圖片選取、文字敘述、版面規(guī)劃方面的特點,以及如何吸引游客前往。3、(本題5分)分析某電商平臺的網頁設計,研究其在界面布局、色彩搭配、交互設計等方面如何提升用戶體驗,促進商品銷售。4、(本題5分)觀察某電子產品品牌的產品發(fā)布會視頻設計,闡述其如何通過視覺效果和演講內容展
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年設備融資還款合同
- 2024版二人合伙協(xié)議書簡單一點
- 2024年美甲店與美容師用工合同
- 2024年足浴店項目合作合同3篇
- 2024年門頭翻新施工合同
- 2025年度園林綠化工程鏟車租賃及生態(tài)保護協(xié)議2篇
- 2024年朋友間借款協(xié)議
- 2024年面料原材料批發(fā)與分銷合同3篇
- 2025年度智能停車設施施工合同示范文本3篇
- 2024年高端咖啡廳合伙經營及利潤分配合同一
- 2025福建中閩海上風電限公司招聘14人高頻重點提升(共500題)附帶答案詳解
- 智能網聯(lián)汽車技術應用專業(yè)國家技能人才培養(yǎng)工學一體化課程標準
- 政治-北京市朝陽區(qū)2024-2025學年高三第一學期期末質量檢測考試試題和答案
- 物業(yè)公司績效考核與激勵機制
- 術后甲狀旁腺功能減退癥管理專家共識
- 【7道期末】安徽省安慶市區(qū)2023-2024學年七年級上學期期末道德與法治試題(含解析)
- 基金項目經理招聘筆試題與參考答案(某大型集團公司)2025年
- 2023-2024學年浙江省麗水市蓮都區(qū)教科版六年級上冊期末考試科學試卷
- 學校2024-2025學年教研工作計劃
- 北京市矢量地圖-可改顏色
- 2024北京初三(上)期末語文匯編:議論文閱讀
評論
0/150
提交評論