版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆天津市濱海新區(qū)七所重點學(xué)校高考仿真模擬數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.胡夫金字塔是底面為正方形的錐體,四個側(cè)面都是相同的等腰三角形.研究發(fā)現(xiàn),該金字塔底面周長除以倍的塔高,恰好為祖沖之發(fā)現(xiàn)的密率.設(shè)胡夫金字塔的高為,假如對胡夫金字塔進(jìn)行亮化,沿其側(cè)棱和底邊布設(shè)單條燈帶,則需要燈帶的總長度約為A. B.C. D.2.已知實數(shù)滿足則的最大值為()A.2 B. C.1 D.03.已知函數(shù),若,則的最小值為()參考數(shù)據(jù):A. B. C. D.4.如圖所示的莖葉圖為高三某班名學(xué)生的化學(xué)考試成績,算法框圖中輸入的,,,,為莖葉圖中的學(xué)生成績,則輸出的,分別是()A., B.,C., D.,5.已知是空間中兩個不同的平面,是空間中兩條不同的直線,則下列說法正確的是()A.若,且,則B.若,且,則C.若,且,則D.若,且,則6.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件7.已知數(shù)列的前項和為,且,,則()A. B. C. D.8.水平放置的,用斜二測畫法作出的直觀圖是如圖所示的,其中,則繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體的表面積為()A. B. C. D.9.已知函數(shù)在上有兩個零點,則的取值范圍是()A. B. C. D.10.設(shè)函數(shù),當(dāng)時,,則()A. B. C.1 D.11.已知雙曲線的右焦點為F,過右頂點A且與x軸垂直的直線交雙曲線的一條漸近線于M點,MF的中點恰好在雙曲線C上,則C的離心率為()A. B. C. D.12.向量,,且,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.西周初數(shù)學(xué)家商高在公元前1000年發(fā)現(xiàn)勾股定理的一個特例:勾三,股四,弦五.此發(fā)現(xiàn)早于畢達(dá)哥拉斯定理五百到六百年.我們把可以構(gòu)成一個直角三角形三邊的一組正整數(shù)稱為勾股數(shù).現(xiàn)從3,4,5,6,7,8,9,10,11,12,13這11個數(shù)中隨機抽取3個數(shù),則這3個數(shù)能構(gòu)成勾股數(shù)的概率為__________.14.某中學(xué)數(shù)學(xué)競賽培訓(xùn)班共有10人,分為甲、乙兩個小組,在一次階段測試中兩個小組成績的莖葉圖如圖所示,若甲組5名同學(xué)成績的平均數(shù)為81,乙組5名同學(xué)成績的中位數(shù)為73,則x-y的值為________.15.有以下四個命題:①在中,的充要條件是;②函數(shù)在區(qū)間上存在零點的充要條件是;③對于函數(shù),若,則必不是奇函數(shù);④函數(shù)與的圖象關(guān)于直線對稱.其中正確命題的序號為______.16.已知實數(shù)x,y滿足,則的最大值為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)我國在2018年社保又出新的好消息,之前流動就業(yè)人員跨地區(qū)就業(yè)后,社保轉(zhuǎn)移接續(xù)的手續(xù)往往比較繁瑣,費時費力.社保改革后將簡化手續(xù),深得流動就業(yè)人員的贊譽.某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續(xù)所需時間(天)與人數(shù)的頻數(shù)分布表:時間人數(shù)156090754515(1)若300名辦理社保的人員中流動人員210人,非流動人員90人,若辦理時間超過4天的人員里非流動人員有60人,請完成辦理社保手續(xù)所需時間與是否流動人員的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“辦理社保手續(xù)所需時間與是否流動人員”有關(guān).列聯(lián)表如下流動人員非流動人員總計辦理社保手續(xù)所需時間不超過4天辦理社保手續(xù)所需時間超過4天60總計21090300(2)為了改進(jìn)工作作風(fēng),提高效率,從抽取的300人中辦理時間為流動人員中利用分層抽樣,抽取12名流動人員召開座談會,其中3人要求交書面材料,3人中辦理的時間為的人數(shù)為,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87918.(12分)已知函數(shù),其中,.(1)當(dāng)時,求的值;(2)當(dāng)?shù)淖钚≌芷跒闀r,求在上的值域.19.(12分)已知f(x)=|x+3|-|x-2|(1)求函數(shù)f(x)的最大值m;(2)正數(shù)a,b,c滿足a+2b+3c=m,求證:20.(12分)在四棱錐的底面是菱形,底面,,分別是的中點,.(Ⅰ)求證:;(Ⅱ)求直線與平面所成角的正弦值;(III)在邊上是否存在點,使與所成角的余弦值為,若存在,確定點的位置;若不存在,說明理由.21.(12分)已知函數(shù)(1)若函數(shù)有且只有一個零點,求實數(shù)的取值范圍;(2)若函數(shù)對恒成立,求實數(shù)的取值范圍.22.(10分)如圖,三棱錐中,,,,,.(1)求證:;(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
設(shè)胡夫金字塔的底面邊長為,由題可得,所以,該金字塔的側(cè)棱長為,所以需要燈帶的總長度約為,故選D.2、B【解析】
作出可行域,平移目標(biāo)直線即可求解.【詳解】解:作出可行域:由得,由圖形知,經(jīng)過點時,其截距最大,此時最大得,當(dāng)時,故選:B【點睛】考查線性規(guī)劃,是基礎(chǔ)題.3、A【解析】
首先的單調(diào)性,由此判斷出,由求得的關(guān)系式.利用導(dǎo)數(shù)求得的最小值,由此求得的最小值.【詳解】由于函數(shù),所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡得,所以,構(gòu)造函數(shù),.構(gòu)造函數(shù),,所以在區(qū)間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區(qū)間上遞增,在區(qū)間上遞減.而,所以在區(qū)間上的最小值為,也即的最小值為,所以的最小值為.故選:A【點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查分段函數(shù)的圖像與性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.4、B【解析】
試題分析:由程序框圖可知,框圖統(tǒng)計的是成績不小于80和成績不小于60且小于80的人數(shù),由莖葉圖可知,成績不小于80的有12個,成績不小于60且小于80的有26個,故,.考點:程序框圖、莖葉圖.5、D【解析】
利用線面平行和垂直的判定定理和性質(zhì)定理,對選項做出判斷,舉出反例排除.【詳解】解:對于,當(dāng),且,則與的位置關(guān)系不定,故錯;對于,當(dāng)時,不能判定,故錯;對于,若,且,則與的位置關(guān)系不定,故錯;對于,由可得,又,則故正確.故選:.【點睛】本題考查空間線面位置關(guān)系.判斷線面位置位置關(guān)系利用好線面平行和垂直的判定定理和性質(zhì)定理.一般可借助正方體模型,以正方體為主線直觀感知并準(zhǔn)確判斷.6、B【解析】
先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據(jù)此可知“”是“”的必要不充分條件.故選:B【點睛】本題考查了必要不充分條件的判定,考查了學(xué)生數(shù)學(xué)運算,邏輯推理能力,屬于基礎(chǔ)題.7、C【解析】
根據(jù)已知條件判斷出數(shù)列是等比數(shù)列,求得其通項公式,由此求得.【詳解】由于,所以數(shù)列是等比數(shù)列,其首項為,第二項為,所以公比為.所以,所以.故選:C【點睛】本小題主要考查等比數(shù)列的證明,考查等比數(shù)列通項公式,屬于基礎(chǔ)題.8、B【解析】
根據(jù)斜二測畫法的基本原理,將平面直觀圖還原為原幾何圖形,可得,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,圓錐的側(cè)面展開圖是扇形根據(jù)扇形面積公式即可求得組合體的表面積.【詳解】根據(jù)“斜二測畫法”可得,,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,它的表面積為.故選:【點睛】本題考查斜二測畫法的應(yīng)用及組合體的表面積求法,難度較易.9、C【解析】
對函數(shù)求導(dǎo),對a分類討論,分別求得函數(shù)的單調(diào)性及極值,結(jié)合端點處的函數(shù)值進(jìn)行判斷求解.【詳解】∵,.當(dāng)時,,在上單調(diào)遞增,不合題意.當(dāng)時,,在上單調(diào)遞減,也不合題意.當(dāng)時,則時,,在上單調(diào)遞減,時,,在上單調(diào)遞增,又,所以在上有兩個零點,只需即可,解得.綜上,的取值范圍是.故選C.【點睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點的問題,考查了函數(shù)的單調(diào)性及極值問題,屬于中檔題.10、A【解析】
由降冪公式,兩角和的正弦公式化函數(shù)為一個角的一個三角函數(shù)形式,然后由正弦函數(shù)性質(zhì)求得參數(shù)值.【詳解】,時,,,∴,由題意,∴.故選:A.【點睛】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數(shù)性質(zhì),掌握正弦函數(shù)性質(zhì)是解題關(guān)鍵.11、A【解析】
設(shè),則MF的中點坐標(biāo)為,代入雙曲線的方程可得的關(guān)系,再轉(zhuǎn)化成關(guān)于的齊次方程,求出的值,即可得答案.【詳解】雙曲線的右頂點為,右焦點為,M所在直線為,不妨設(shè),∴MF的中點坐標(biāo)為.代入方程可得,∴,∴,∴(負(fù)值舍去).故選:A.【點睛】本題考查雙曲線的離心率,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意構(gòu)造的齊次方程.12、D【解析】
根據(jù)向量平行的坐標(biāo)運算以及誘導(dǎo)公式,即可得出答案.【詳解】故選:D【點睛】本題主要考查了由向量平行求參數(shù)以及誘導(dǎo)公式的應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由組合數(shù)結(jié)合古典概型求解即可【詳解】從11個數(shù)中隨機抽取3個數(shù)有種不同的方法,其中能構(gòu)成勾股數(shù)的有共三種,所以,所求概率為.故答案為【點睛】本題考查古典概型與數(shù)學(xué)文化,考查組合問題,數(shù)據(jù)處理能力和應(yīng)用意識.14、【解析】
根據(jù)莖葉圖中的數(shù)據(jù),結(jié)合平均數(shù)與中位數(shù)的概念,求出x、y的值.【詳解】根據(jù)莖葉圖中的數(shù)據(jù),得:甲班5名同學(xué)成績的平均數(shù)為,解得;又乙班5名同學(xué)的中位數(shù)為73,則;.故答案為:.【點睛】本題考查莖葉圖及根據(jù)莖葉圖計算中位數(shù)、平均數(shù),考查數(shù)據(jù)分析能力,屬于簡單題.15、①【解析】
由三角形的正弦定理和邊角關(guān)系可判斷①;由零點存在定理和二次函數(shù)的圖象可判斷②;由,結(jié)合奇函數(shù)的定義,可判斷③;由函數(shù)圖象對稱的特點可判斷④.【詳解】解:①在中,,故①正確;②函數(shù)在區(qū)間上存在零點,比如在存在零點,但是,故②錯誤;③對于函數(shù),若,滿足,但可能為奇函數(shù),故③錯誤;④函數(shù)與的圖象,可令,即,即有和的圖象關(guān)于直線對稱,即對稱,故④錯誤.故答案為:①.【點睛】本題主要考查函數(shù)的零點存在定理和對稱性、奇偶性的判斷,考查判斷能力和推理能力,屬于中檔題.16、1【解析】
直接用表示出,然后由不等式性質(zhì)得出結(jié)論.【詳解】由題意,又,∴,即,∴的最大值為1.故答案為:1.【點睛】本題考查不等式的性質(zhì),掌握不等式的性質(zhì)是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)列聯(lián)表見解析,有;(2)分布列見解析,.【解析】
(1)根據(jù)題意,結(jié)合已知數(shù)據(jù)即可填寫列聯(lián)表,計算出的觀測值,即可進(jìn)行判斷;(2)先計算出時間在和選取的人數(shù),再求出的可取值,根據(jù)古典概型的概率計算公式求得分布列,結(jié)合分布列即可求得數(shù)學(xué)期望.【詳解】(1)因為樣本數(shù)據(jù)中有流動人員210人,非流動人員90人,所以辦理社保手續(xù)所需時間與是否流動人員列聯(lián)表如下:辦理社保手續(xù)所需時間與是否流動人員列聯(lián)表流動人員非流動人員總計辦理社保手續(xù)所需時間不超過4天453075辦理社保手續(xù)所需時間超過4天16560225總計21090300結(jié)合列聯(lián)表可算得.有95%的把握認(rèn)為“辦理社保手續(xù)所需時間與是否流動人員”有關(guān).(2)根據(jù)分層抽樣可知時間在可選9人,時間在可以選3名,故,則,,,,可知分布列為0123可知.【點睛】本題考查獨立性檢驗中的計算,以及離散型隨機變量的分布列以及數(shù)學(xué)期望,涉及分層抽樣,屬綜合性中檔題.18、(1)(2)【解析】
(1)根據(jù),得到函數(shù),然后,直接求解的值;(2)首先,化簡函數(shù),然后,結(jié)合周期公式,得到,再結(jié)合,及正弦函數(shù)的性質(zhì)解答即可.【詳解】(1)因為,所以(2)因為即因為,所以所以因為所以所以當(dāng)時,.當(dāng)時,(最大值)當(dāng)時,在是增函數(shù),在是減函數(shù).的值域是.【點睛】本題主要考查了簡單角的三角函數(shù)值的求解方法,兩角和與差的正弦、余弦公式,三角函數(shù)的圖象與性質(zhì)等知識,考查了運算求解能力,屬于中檔題.19、(1)(2)見解析【解析】
(1)利用絕對值三角不等式求得的最大值.(2)由(1)得.方法一,利用柯西不等式證得不等式成立;方法二,利用“的代換”的方法,結(jié)合基本不等式證得不等式成立.【詳解】(1)由絕對值不等式性質(zhì)得當(dāng)且僅當(dāng)即時等號成立,所以(2)由(1)得.法1:由柯西不等式得當(dāng)且僅當(dāng)時等號成立,即,所以.法2:由得,,當(dāng)且僅當(dāng)時“=”成立.【點睛】本小題主要考查絕對值三角不等式,考查利用柯西不等式、基本不等式證明不等式,屬于中檔題.20、(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析.【解析】
(Ⅰ)由題意結(jié)合幾何關(guān)系可證得平面,據(jù)此證明題中的結(jié)論即可;(Ⅱ)建立空間直角坐標(biāo)系,求得直線的方向向量與平面的一個法向量,然后求解線面角的正弦值即可;(Ⅲ)假設(shè)滿足題意的點存在,設(shè),由直線與的方向向量得到關(guān)于的方程,解方程即可確定點F的位置.【詳解】(Ⅰ)由菱形的性質(zhì)可得:,結(jié)合三角形中位線的性質(zhì)可知:,故,底面,底面,故,且,故平面,平面,(Ⅱ)由題意結(jié)合菱形的性質(zhì)易知,,,以點O為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,則:,設(shè)平面的一個法向量為,則:,據(jù)此可得平面的一個法向量為,而,設(shè)直線與平面所成角為,則.(Ⅲ)由題意可得:,假設(shè)滿足題意的點存在,設(shè),,據(jù)此可得:,即:,從而點F的坐標(biāo)為,據(jù)此可得:,,結(jié)合題意有:,解得:.故點F為中點時滿足題意.【點睛】本題主要考查線面垂直的判定定理與性質(zhì)定理,線面角的向量求法,立體幾何中的探索性問題等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.21、(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO 16520:2025 EN Tourism and related services - Restaurants and catering - Vocabulary
- 2024年環(huán)境污染治理技術(shù)與工程合同
- 2024年特許連鎖合同:美容護(hù)膚品牌連鎖經(jīng)營
- 船舶英語課程設(shè)計
- 液壓課程設(shè)計集成塊
- 統(tǒng)計表微課程設(shè)計
- 箱蓋機械制造課程設(shè)計
- 文科課程設(shè)計個人日志
- 背景圖高級課程設(shè)計
- 物體旋轉(zhuǎn)課程設(shè)計思路
- 一次顯著的性能優(yōu)化
- 《中國近現(xiàn)代史綱要(2023版)》課后習(xí)題答案合集匯編
- 黑龍江省建筑工程施工質(zhì)量驗收標(biāo)準(zhǔn)DB23-2017
- 自貢鴻鶴化工股份有限公司20萬噸離子膜燒堿等量搬遷升級改造項目
- 醫(yī)院關(guān)于成立安全生產(chǎn)領(lǐng)導(dǎo)小組的通知
- 【施工方案】空調(diào)百葉施工方案
- ppt模板熱烈歡迎領(lǐng)導(dǎo)蒞臨指導(dǎo)模板課件(15頁PPT)
- 領(lǐng)域驅(qū)動設(shè)計1
- 腦卒中的腸內(nèi)營養(yǎng)支持
- 電業(yè)安全工作規(guī)程——電氣部分電業(yè)安全工作規(guī)程
- 基于穩(wěn)態(tài)模型的轉(zhuǎn)差頻率控制的交流調(diào)速系統(tǒng)的仿真與設(shè)計
評論
0/150
提交評論