版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)北京理工大學(xué)
《機(jī)器學(xué)習(xí)初步》2021-2022學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在機(jī)器學(xué)習(xí)中,數(shù)據(jù)預(yù)處理是非常重要的環(huán)節(jié)。以下關(guān)于數(shù)據(jù)預(yù)處理的說(shuō)法中,錯(cuò)誤的是:數(shù)據(jù)預(yù)處理包括數(shù)據(jù)清洗、數(shù)據(jù)歸一化、數(shù)據(jù)標(biāo)準(zhǔn)化等步驟。目的是提高數(shù)據(jù)的質(zhì)量和可用性。那么,下列關(guān)于數(shù)據(jù)預(yù)處理的說(shuō)法錯(cuò)誤的是()A.數(shù)據(jù)清洗可以去除數(shù)據(jù)中的噪聲和異常值B.數(shù)據(jù)歸一化將數(shù)據(jù)映射到[0,1]區(qū)間,便于不同特征之間的比較C.數(shù)據(jù)標(biāo)準(zhǔn)化將數(shù)據(jù)的均值和標(biāo)準(zhǔn)差調(diào)整為特定的值D.數(shù)據(jù)預(yù)處理對(duì)模型的性能影響不大,可以忽略2、假設(shè)正在構(gòu)建一個(gè)語(yǔ)音識(shí)別系統(tǒng),需要對(duì)輸入的語(yǔ)音信號(hào)進(jìn)行預(yù)處理和特征提取。語(yǔ)音信號(hào)具有時(shí)變、非平穩(wěn)等特點(diǎn),在預(yù)處理階段,以下哪種操作通常不是必需的?()A.去除背景噪聲B.對(duì)語(yǔ)音信號(hào)進(jìn)行分幀和加窗C.將語(yǔ)音信號(hào)轉(zhuǎn)換為頻域表示D.對(duì)語(yǔ)音信號(hào)進(jìn)行壓縮編碼,減少數(shù)據(jù)量3、假設(shè)正在進(jìn)行一個(gè)目標(biāo)檢測(cè)任務(wù),例如在圖像中檢測(cè)出人物和車輛。以下哪種深度學(xué)習(xí)框架在目標(biāo)檢測(cè)中被廣泛應(yīng)用?()A.TensorFlowB.PyTorchC.CaffeD.以上框架都常用于目標(biāo)檢測(cè)4、在機(jī)器學(xué)習(xí)中,強(qiáng)化學(xué)習(xí)是一種通過(guò)與環(huán)境交互來(lái)學(xué)習(xí)最優(yōu)策略的方法。假設(shè)一個(gè)機(jī)器人要通過(guò)強(qiáng)化學(xué)習(xí)來(lái)學(xué)習(xí)如何在復(fù)雜的環(huán)境中行走。以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,哪一項(xiàng)是不正確的?()A.強(qiáng)化學(xué)習(xí)中的智能體根據(jù)環(huán)境的反饋(獎(jiǎng)勵(lì)或懲罰)來(lái)調(diào)整自己的行為策略B.Q-learning是一種基于值函數(shù)的強(qiáng)化學(xué)習(xí)算法,通過(guò)估計(jì)狀態(tài)-動(dòng)作值來(lái)選擇最優(yōu)動(dòng)作C.策略梯度算法直接優(yōu)化策略函數(shù),通過(guò)計(jì)算策略的梯度來(lái)更新策略參數(shù)D.強(qiáng)化學(xué)習(xí)不需要對(duì)環(huán)境進(jìn)行建模,只需要不斷嘗試不同的動(dòng)作就能找到最優(yōu)策略5、在進(jìn)行機(jī)器學(xué)習(xí)模型的訓(xùn)練時(shí),過(guò)擬合是一個(gè)常見的問(wèn)題。假設(shè)我們正在訓(xùn)練一個(gè)決策樹模型來(lái)預(yù)測(cè)客戶是否會(huì)購(gòu)買某種產(chǎn)品,給定了客戶的個(gè)人信息和購(gòu)買歷史等數(shù)據(jù)。以下關(guān)于過(guò)擬合的描述和解決方法,哪一項(xiàng)是錯(cuò)誤的?()A.過(guò)擬合表現(xiàn)為模型在訓(xùn)練集上表現(xiàn)很好,但在測(cè)試集上表現(xiàn)不佳B.增加訓(xùn)練數(shù)據(jù)的數(shù)量可以有效地減少過(guò)擬合的發(fā)生C.對(duì)決策樹進(jìn)行剪枝操作,即刪除一些不重要的分支,可以防止過(guò)擬合D.降低模型的復(fù)雜度,例如減少?zèng)Q策樹的深度,會(huì)導(dǎo)致模型的擬合能力下降,無(wú)法解決過(guò)擬合問(wèn)題6、某研究團(tuán)隊(duì)正在開發(fā)一個(gè)用于疾病預(yù)測(cè)的機(jī)器學(xué)習(xí)模型,需要考慮模型的魯棒性和穩(wěn)定性。以下哪種方法可以用于評(píng)估模型在不同數(shù)據(jù)集和條件下的性能?()A.交叉驗(yàn)證B.留一法C.自助法D.以上方法都可以7、假設(shè)在一個(gè)醫(yī)療診斷的場(chǎng)景中,需要通過(guò)機(jī)器學(xué)習(xí)算法來(lái)預(yù)測(cè)患者是否患有某種疾病。收集了大量患者的生理指標(biāo)、病史和生活習(xí)慣等數(shù)據(jù)。在選擇算法時(shí),需要考慮模型的準(zhǔn)確性、可解釋性以及對(duì)新數(shù)據(jù)的泛化能力。以下哪種算法可能是最適合的?()A.決策樹算法,因?yàn)樗軌蚯逦卣故緵Q策過(guò)程,具有較好的可解釋性,但可能在復(fù)雜數(shù)據(jù)上的準(zhǔn)確性有限B.支持向量機(jī)算法,對(duì)高維數(shù)據(jù)有較好的處理能力,準(zhǔn)確性較高,但模型解釋相對(duì)困難C.隨機(jī)森林算法,由多個(gè)決策樹組成,準(zhǔn)確性較高且具有一定的抗噪能力,但可解釋性一般D.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)算法,能夠自動(dòng)提取特征,準(zhǔn)確性可能很高,但模型非常復(fù)雜,難以解釋8、假設(shè)要開發(fā)一個(gè)疾病診斷的輔助系統(tǒng),能夠根據(jù)患者的醫(yī)學(xué)影像(如X光、CT等)和臨床數(shù)據(jù)做出診斷建議。以下哪種模型融合策略可能是最有效的?()A.簡(jiǎn)單平均多個(gè)模型的預(yù)測(cè)結(jié)果,計(jì)算簡(jiǎn)單,但可能無(wú)法充分利用各個(gè)模型的優(yōu)勢(shì)B.基于加權(quán)平均的融合,根據(jù)模型的性能或重要性分配權(quán)重,但權(quán)重的確定可能具有主觀性C.采用堆疊(Stacking)方法,將多個(gè)模型的輸出作為新的特征輸入到一個(gè)元模型中進(jìn)行融合,但可能存在過(guò)擬合風(fēng)險(xiǎn)D.基于注意力機(jī)制的融合,動(dòng)態(tài)地根據(jù)輸入數(shù)據(jù)為不同模型分配權(quán)重,能夠更好地適應(yīng)不同情況,但實(shí)現(xiàn)較復(fù)雜9、機(jī)器學(xué)習(xí)中的算法選擇需要考慮多個(gè)因素。以下關(guān)于算法選擇的說(shuō)法中,錯(cuò)誤的是:算法選擇需要考慮數(shù)據(jù)的特點(diǎn)、問(wèn)題的類型、計(jì)算資源等因素。不同的算法適用于不同的場(chǎng)景。那么,下列關(guān)于算法選擇的說(shuō)法錯(cuò)誤的是()A.對(duì)于小樣本數(shù)據(jù)集,優(yōu)先選擇復(fù)雜的深度學(xué)習(xí)算法B.對(duì)于高維度數(shù)據(jù),優(yōu)先選擇具有降維功能的算法C.對(duì)于實(shí)時(shí)性要求高的任務(wù),優(yōu)先選擇計(jì)算速度快的算法D.對(duì)于不平衡數(shù)據(jù)集,優(yōu)先選擇對(duì)不平衡數(shù)據(jù)敏感的算法10、在一個(gè)圖像分類任務(wù)中,如果需要快速進(jìn)行模型的訓(xùn)練和預(yù)測(cè),以下哪種輕量級(jí)模型架構(gòu)可能比較適合?()A.MobileNetB.ResNetC.InceptionD.VGG11、假設(shè)要對(duì)一個(gè)復(fù)雜的數(shù)據(jù)集進(jìn)行降維,以便于可視化和后續(xù)分析。以下哪種降維方法可能是最有效的?()A.主成分分析(PCA),尋找數(shù)據(jù)的主要方向,但可能丟失一些局部信息B.線性判別分析(LDA),考慮類別信息,但對(duì)非線性結(jié)構(gòu)不敏感C.t-分布隨機(jī)鄰域嵌入(t-SNE),能夠保持?jǐn)?shù)據(jù)的局部結(jié)構(gòu),但計(jì)算復(fù)雜度高D.以上方法結(jié)合使用,根據(jù)數(shù)據(jù)特點(diǎn)和分析目的選擇合適的降維策略12、在強(qiáng)化學(xué)習(xí)中,智能體通過(guò)與環(huán)境交互來(lái)學(xué)習(xí)最優(yōu)策略。如果智能體在某個(gè)狀態(tài)下采取的行動(dòng)總是導(dǎo)致低獎(jiǎng)勵(lì),它應(yīng)該()A.繼續(xù)采取相同的行動(dòng),希望情況會(huì)改善B.隨機(jī)選擇其他行動(dòng)C.根據(jù)策略網(wǎng)絡(luò)的輸出選擇行動(dòng)D.調(diào)整策略以避免采取該行動(dòng)13、某研究需要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行降維,同時(shí)希望保留數(shù)據(jù)的主要特征。以下哪種降維方法在這種情況下可能較為合適?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-分布隨機(jī)鄰域嵌入(t-SNE)D.自編碼器14、當(dāng)使用支持向量機(jī)(SVM)進(jìn)行分類任務(wù)時(shí),如果數(shù)據(jù)不是線性可分的,通常會(huì)采用以下哪種方法()A.增加樣本數(shù)量B.降低維度C.使用核函數(shù)將數(shù)據(jù)映射到高維空間D.更換分類算法15、在進(jìn)行異常檢測(cè)時(shí),以下關(guān)于異常檢測(cè)方法的描述,哪一項(xiàng)是不正確的?()A.基于統(tǒng)計(jì)的方法通過(guò)計(jì)算數(shù)據(jù)的均值、方差等統(tǒng)計(jì)量來(lái)判斷異常值B.基于距離的方法通過(guò)計(jì)算樣本之間的距離來(lái)識(shí)別異常點(diǎn)C.基于密度的方法認(rèn)為異常點(diǎn)的局部密度顯著低于正常點(diǎn)D.所有的異常檢測(cè)方法都能準(zhǔn)確地檢測(cè)出所有的異常,不存在漏檢和誤檢的情況二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)解釋Isomap降維方法的特點(diǎn)。2、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)在生物信息學(xué)數(shù)據(jù)庫(kù)中的應(yīng)用。3、(本題5分)簡(jiǎn)述在生物信息學(xué)中,機(jī)器學(xué)習(xí)的應(yīng)用場(chǎng)景。4、(本題5分)機(jī)器學(xué)習(xí)在藝術(shù)創(chuàng)作中的創(chuàng)新點(diǎn)在哪里?三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)機(jī)器學(xué)習(xí)中的模型調(diào)優(yōu)方法有哪些?結(jié)合具體案例,分析如何選擇合適的參數(shù)以提高模型性能。2、(本題5分)分析機(jī)器學(xué)習(xí)在天文學(xué)中的恒星分類中的應(yīng)用,討論其對(duì)天文學(xué)研究的貢獻(xiàn)。3、(本題5分)論述在自然語(yǔ)言處理的語(yǔ)義理解任務(wù)中,機(jī)器學(xué)習(xí)算法的應(yīng)用和挑戰(zhàn)。研究如何捕捉文本中的深層語(yǔ)義信息。4、(本題5分)分析機(jī)器學(xué)習(xí)在智能交通領(lǐng)域的應(yīng)用。舉例說(shuō)明機(jī)器學(xué)習(xí)在交通流量預(yù)測(cè)、交通信號(hào)控制、車輛識(shí)別等方面的應(yīng)用,并探討其對(duì)智能交通系統(tǒng)的影響及未來(lái)發(fā)展趨勢(shì)。5、(本題5分)論述深度學(xué)習(xí)中的膠囊網(wǎng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版九年級(jí)化學(xué)上冊(cè)自制第六單元課題4實(shí)驗(yàn)活動(dòng)2-二氧化碳實(shí)驗(yàn)室制取與性質(zhì)(34張)
- 2019-2020學(xué)年高中數(shù)學(xué)第2章解析幾何初步2-3空間直角坐標(biāo)系課件北師大版必修2
- 接待禮儀-素材-培訓(xùn)講學(xué)
- 教育學(xué)原理04-近現(xiàn)代高等教育發(fā)展、教師
- 2024年泰州職業(yè)技術(shù)學(xué)院高職單招數(shù)學(xué)歷年參考題庫(kù)含答案解析
- 2024年陽(yáng)江市衛(wèi)校附屬醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫(kù)頻考點(diǎn)附帶答案
- 二零二五年離婚房產(chǎn)分割與贍養(yǎng)義務(wù)協(xié)議3篇
- 二零二五版“汽車零部件銷售協(xié)議”英文翻譯
- 2024年江西醫(yī)學(xué)高等??茖W(xué)校高職單招職業(yè)技能測(cè)驗(yàn)歷年參考題庫(kù)(頻考版)含答案解析
- 2024年江蘇安全技術(shù)職業(yè)學(xué)院高職單招職業(yè)技能測(cè)驗(yàn)歷年參考題庫(kù)(頻考版)含答案解析
- 《潔凈工程項(xiàng)目定額》(征求意見稿)
- 城鎮(zhèn)燃?xì)庠O(shè)計(jì)規(guī)范
- 年零售藥店操作規(guī)程版
- 口袋妖怪白金光圖文攻略2周目
- 搞笑個(gè)性YY娛樂頻道分組設(shè)計(jì)圖
- 靜力觸探技術(shù)標(biāo)準(zhǔn)
- 鋼結(jié)構(gòu)、膜結(jié)構(gòu)安全技術(shù)交底
- 材料、設(shè)備進(jìn)場(chǎng)驗(yàn)收流程圖
- 兒童幼兒教育教學(xué)培訓(xùn)卡通ppt課件
- 單肺通氣技術(shù)
- 一年級(jí)上冊(cè)數(shù)學(xué)(2003)
評(píng)論
0/150
提交評(píng)論