2025屆山西省太原市六十六中高三第二次診斷性檢測數(shù)學試卷含解析_第1頁
2025屆山西省太原市六十六中高三第二次診斷性檢測數(shù)學試卷含解析_第2頁
2025屆山西省太原市六十六中高三第二次診斷性檢測數(shù)學試卷含解析_第3頁
2025屆山西省太原市六十六中高三第二次診斷性檢測數(shù)學試卷含解析_第4頁
2025屆山西省太原市六十六中高三第二次診斷性檢測數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆山西省太原市六十六中高三第二次診斷性檢測數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在底面邊長為1,高為2的正四棱柱中,點是平面內(nèi)一點,則三棱錐的正視圖與側視圖的面積之和為()A.2 B.3 C.4 D.52.已知水平放置的△ABC是按“斜二測畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面積是()A. B.2C. D.3.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個幾何體的體積是()A. B. C.16 D.324.拋物線方程為,一直線與拋物線交于兩點,其弦的中點坐標為,則直線的方程為()A. B. C. D.5.已知中,角、所對的邊分別是,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分必要條件6.馬林●梅森是17世紀法國著名的數(shù)學家和修道士,也是當時歐洲科學界一位獨特的中心人物,梅森在歐幾里得、費馬等人研究的基礎上對2p﹣1作了大量的計算、驗證工作,人們?yōu)榱思o念梅森在數(shù)論方面的這一貢獻,將形如2P﹣1(其中p是素數(shù))的素數(shù),稱為梅森素數(shù).若執(zhí)行如圖所示的程序框圖,則輸出的梅森素數(shù)的個數(shù)是()A.3 B.4 C.5 D.67.已知,是函數(shù)圖像上不同的兩點,若曲線在點,處的切線重合,則實數(shù)的最小值是()A. B. C. D.18.已知復數(shù)滿足(其中為的共軛復數(shù)),則的值為()A.1 B.2 C. D.9.正方形的邊長為,是正方形內(nèi)部(不包括正方形的邊)一點,且,則的最小值為()A. B. C. D.10.觀察下列各式:,,,,,,,,根據(jù)以上規(guī)律,則()A. B. C. D.11.函數(shù)的圖象如圖所示,則它的解析式可能是()A. B.C. D.12.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是由一個棱柱挖去一個棱錐后的幾何體的三視圖,則該幾何體的體積為A.72 B.64 C.48 D.32二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若關于x的方程有且只有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍是_______________.14.如圖所示,在邊長為4的正方形紙片中,與相交于.剪去,將剩余部分沿,折疊,使、重合,則以、、、為頂點的四面體的外接球的體積為________.15.函數(shù)的圖象向右平移個單位后,與函數(shù)的圖象重合,則_____.16.在正奇數(shù)非減數(shù)列中,每個正奇數(shù)出現(xiàn)次.已知存在整數(shù)、、,對所有的整數(shù)滿足,其中表示不超過的最大整數(shù).則等于______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程是,直線和直線的極坐標方程分別是()和(),其中().(1)寫出曲線的直角坐標方程;(2)設直線和直線分別與曲線交于除極點的另外點,,求的面積最小值.18.(12分)設為坐標原點,動點在橢圓:上,該橢圓的左頂點到直線的距離為.(1)求橢圓的標準方程;(2)若橢圓外一點滿足,平行于軸,,動點在直線上,滿足.設過點且垂直的直線,試問直線是否過定點?若過定點,請寫出該定點,若不過定點請說明理由.19.(12分)已知函數(shù),(1)若,求的單調(diào)區(qū)間和極值;(2)設,且有兩個極值點,,若,求的最小值.20.(12分)設數(shù)列,其前項和,又單調(diào)遞增的等比數(shù)列,,.(Ⅰ)求數(shù)列,的通項公式;(Ⅱ)若,求數(shù)列的前n項和,并求證:.21.(12分)如圖,橢圓的左、右頂點分別為,,上、下頂點分別為,,且,為等邊三角形,過點的直線與橢圓在軸右側的部分交于、兩點.(1)求橢圓的標準方程;(2)求四邊形面積的取值范圍.22.(10分)如圖,已知橢圓C:x24+y2=1,F(xiàn)為其右焦點,直線l:y=kx+m(km<0)與橢圓交于P(x1(I)試用x1表示|PF|(II)證明:原點O到直線l的距離為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據(jù)幾何體分析正視圖和側視圖的形狀,結合題干中的數(shù)據(jù)可計算出結果.【詳解】由三視圖的性質(zhì)和定義知,三棱錐的正視圖與側視圖都是底邊長為高為的三角形,其面積都是,正視圖與側視圖的面積之和為,故選:A.【點睛】本題考查幾何體正視圖和側視圖的面積和,解答的關鍵就是分析出正視圖和側視圖的形狀,考查空間想象能力與計算能力,屬于基礎題.2、A【解析】

先根據(jù)已知求出原△ABC的高為AO=,再求原△ABC的面積.【詳解】由題圖可知原△ABC的高為AO=,∴S△ABC=×BC×OA=×2×=,故答案為A【點睛】本題主要考查斜二測畫法的定義和三角形面積的計算,意在考察學生對這些知識的掌握水平和分析推理能力.3、A【解析】幾何體為一個三棱錐,高為4,底面為一個等腰直角三角形,直角邊長為4,所以體積是,選A.4、A【解析】

設,,利用點差法得到,所以直線的斜率為2,又過點,再利用點斜式即可得到直線的方程.【詳解】解:設,∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過點,∴直線的方程為:,即,故選:A.【點睛】本題考查直線與拋物線相交的中點弦問題,解題方法是“點差法”,即設出弦的兩端點坐標,代入拋物線方程相減后可把弦所在直線斜率與中點坐標建立關系.5、D【解析】

由大邊對大角定理結合充分條件和必要條件的定義判斷即可.【詳解】中,角、所對的邊分別是、,由大邊對大角定理知“”“”,“”“”.因此,“”是“”的充分必要條件.故選:D.【點睛】本題考查充分條件、必要條件的判斷,考查三角形的性質(zhì)等基礎知識,考查邏輯推理能力,是基礎題.6、C【解析】

模擬程序的運行即可求出答案.【詳解】解:模擬程序的運行,可得:p=1,S=1,輸出S的值為1,滿足條件p≤7,執(zhí)行循環(huán)體,p=3,S=7,輸出S的值為7,滿足條件p≤7,執(zhí)行循環(huán)體,p=5,S=31,輸出S的值為31,滿足條件p≤7,執(zhí)行循環(huán)體,p=7,S=127,輸出S的值為127,滿足條件p≤7,執(zhí)行循環(huán)體,p=9,S=511,輸出S的值為511,此時,不滿足條件p≤7,退出循環(huán),結束,故若執(zhí)行如圖所示的程序框圖,則輸出的梅森素數(shù)的個數(shù)是5,故選:C.【點睛】本題主要考查程序框圖,屬于基礎題.7、B【解析】

先根據(jù)導數(shù)的幾何意義寫出在兩點處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關系樹,從而得出,令函數(shù),結合導數(shù)求出最小值,即可選出正確答案.【詳解】解:當時,,則;當時,則.設為函數(shù)圖像上的兩點,當或時,,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設則,由可得則當時,的最大值為.則在上單調(diào)遞減,則.故選:B.【點睛】本題考查了導數(shù)的幾何意義,考查了推理論證能力,考查了函數(shù)與方程、分類與整合、轉化與化歸等思想方法.本題的難點是求出和的函數(shù)關系式.本題的易錯點是計算.8、D【解析】

按照復數(shù)的運算法則先求出,再寫出,進而求出.【詳解】,,.故選:D【點睛】本題考查復數(shù)的四則運算、共軛復數(shù)及復數(shù)的模,考查基本運算能力,屬于基礎題.9、C【解析】

分別以直線為軸,直線為軸建立平面直角坐標系,設,根據(jù),可求,而,化簡求解.【詳解】解:建立以為原點,以直線為軸,直線為軸的平面直角坐標系.設,,,則,,由,即,得.所以=,所以當時,的最小值為.故選:C.【點睛】本題考查向量的數(shù)量積的坐標表示,屬于基礎題.10、B【解析】

每個式子的值依次構成一個數(shù)列,然后歸納出數(shù)列的遞推關系后再計算.【詳解】以及數(shù)列的應用根據(jù)題設條件,設數(shù)字,,,,,,,構成一個數(shù)列,可得數(shù)列滿足,則,,.故選:B.【點睛】本題主要考查歸納推理,解題關鍵是通過數(shù)列的項歸納出遞推關系,從而可確定數(shù)列的一些項.11、B【解析】

根據(jù)定義域排除,求出的值,可以排除,考慮排除.【詳解】根據(jù)函數(shù)圖象得定義域為,所以不合題意;選項,計算,不符合函數(shù)圖象;對于選項,與函數(shù)圖象不一致;選項符合函數(shù)圖象特征.故選:B【點睛】此題考查根據(jù)函數(shù)圖象選擇合適的解析式,主要利用函數(shù)性質(zhì)分析,常見方法為排除法.12、B【解析】

由三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,利用體積公式,即可求解?!驹斀狻坑深}意,幾何體的三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,所以幾何體的體積為,故選B?!军c睛】本題考查了幾何體的三視圖及體積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線。求解以三視圖為載體的空間幾何體的表面積與體積的關鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關系和數(shù)量關系,利用相應公式求解。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

畫出函數(shù)的圖象,再畫的圖象,求出一個交點時的的值,然后平行移動可得有兩個交點時的的范圍.【詳解】函數(shù)的圖象如圖所示:因為方程有且只有兩個不相等的實數(shù)根,所以圖象與直線有且只有兩個交點即可,當過點時兩個函數(shù)有一個交點,即時,與函數(shù)有一個交點,由圖象可知,直線向下平移后有兩個交點,可得,故答案為:.【點睛】本題主要考查了方程的跟與函數(shù)的圖象交點的轉化,數(shù)形結合的思想,屬于中檔題.14、【解析】

將三棱錐置入正方體中,利用正方體體對角線為三棱錐外接球的直徑即可得到答案.【詳解】由已知,將三棱錐置入正方體中,如圖所示,,故正方體體對角線長為,所以外接球半徑為,其體積為.故答案為:.【點睛】本題考查三棱錐外接球的體積問題,一般在處理特殊幾何體的外接球問題時,要考慮是否能將其置入正(長)方體中,是一道中檔題.15、【解析】

根據(jù)函數(shù)圖象的平移變換公式求得變換后的函數(shù)解析式,再利用誘導公式求得滿足的方程,結合題中的范圍即可求解.【詳解】由函數(shù)圖象的平移變換公式可得,函數(shù)的圖象向右平移個單位后,得到的函數(shù)解析式為,因為函數(shù),所以函數(shù)與函數(shù)的圖象重合,所以,即,因為,所以.故答案為:【點睛】本題考查函數(shù)圖象的平移變換和三角函數(shù)的誘導公式;誘導公式的靈活運用是求解本題的關鍵;屬于中檔題.16、2【解析】

將已知數(shù)列分組為(1),,共個組.設在第組,,則有,即.注意到,解得.所以,.因此,.故.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)16.【解析】

(1)將極坐標方程化為直角坐標方程即可;(2)利用極徑的幾何意義,聯(lián)立曲線,直線,直線的極坐標方程,得出,利用三角形面積公式,結合正弦函數(shù)的性質(zhì),得出的面積最小值.【詳解】(1)曲線:,即化為直角坐標方程為:;(2),即同理∴當且僅當,即()時取等號即的面積最小值為16【點睛】本題主要考查了極坐標方程化直角坐標方程以及極坐標的應用,屬于中檔題.18、(1);(2)見解析【解析】

(1)根據(jù)點到直線的距離公式可求出a的值,即可得橢圓方程;(2)由題意M(x0,y0),N(x0,y1),P(2,t),根據(jù),可得y1=2y0,由,可得2x0+2y0t=6,再根據(jù)向量的運算可得,即可證明.【詳解】(1)左頂點A的坐標為(﹣a,0),∵=,∴|a﹣5|=3,解得a=2或a=8(舍去),∴橢圓C的標準方程為+y2=1,(2)由題意M(x0,y0),N(x0,y1),P(2,t),則依題意可知y1≠y0,得(x0﹣2x0,y1﹣2y0)(0,y1﹣y0)=0,整理可得y1=2y0,或y1=y(tǒng)0(舍),,得(x0,2y0)(2﹣x0,t﹣2y0)=2,整理可得2x0+2y0t=x02+4y02+2=6,由(1)可得F(,0),∴=(﹣x0,﹣2y0),∴?=(﹣x0,﹣2y0)(2,t)=6﹣2x0﹣2y0t=0,∴NF⊥OP,故過點N且垂直于OP的直線過橢圓C的右焦點F.【點睛】本題考查了橢圓方程的求法,直線和橢圓的關系,向量的運算,考查了運算求解能力和轉化與化歸能力,屬于中檔題.19、(1)增區(qū)間為,減區(qū)間為;極小值,無極大值;(2)【解析】

(1)求出f(x)的導數(shù),解不等式,即可得到函數(shù)的單調(diào)區(qū)間,進而得到函數(shù)的極值;(2)由題意可得,,求出的表達式,,求出h(t)的最小值即可.【詳解】(1)將代入中,得到,求導,得到,結合,當?shù)玫剑涸鰠^(qū)間為,當,得減區(qū)間為且在時有極小值,無極大值.(2)將解析式代入,得,求導得到,令,得到,,,,,,,,因為,所以設,令,則所以在單調(diào)遞減,又因為所以,所以或又因為,所以所以,所以的最小值為.【點睛】本題考查了函數(shù)的單調(diào)性、極值、最值問題,考查導數(shù)的應用以及函數(shù)的極值的意義,考查轉化思想與減元意識,是一道綜合題.20、(1),;(2)詳見解析.【解析】

(1)當時,,當時,,當時,也滿足,∴,∵等比數(shù)列,∴,∴,又∵,∴或(舍去),∴;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論