版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
§2.2矩陣的運(yùn)算一、矩陣的加法定義:設(shè)兩個(gè)同型的mn矩陣A=(aij)與B=(bij),那末矩陣A與B的和定義為(aij+bij),記作A+B,即例如:2021/6/271
說明:
只有當(dāng)兩個(gè)矩陣是同型矩陣時(shí),才能進(jìn)行加法運(yùn)算.矩陣加法的運(yùn)算規(guī)律(1)交換律:A+B
=
B+A.(2)結(jié)合律:(A+B)+C
=
A+(B+C).(3)稱為矩陣A的負(fù)矩陣.(4)A+(–A)
=
O,A–B
=
A+(–B).2021/6/272二、數(shù)與矩陣相乘
定義:
數(shù)
與矩陣A=(aij)的乘積定義為(
aij),記作
A或A
,簡稱為數(shù)乘.即設(shè)A,B為同型的m
n
矩陣,
,
為數(shù):(1)(
)A=
(
A).(2)(
+
)A=
A+
A.(3)
(A+B)=
A+
B.數(shù)乘矩陣的運(yùn)算規(guī)律矩陣的加法與數(shù)乘運(yùn)算,統(tǒng)稱為矩陣的線性運(yùn)算.2021/6/273
定義:
設(shè)A
=
(
aij)是一個(gè)m
s矩陣,B
=
(
bij)是一個(gè)s
n
矩陣,定義矩陣A與矩陣B的乘積C
=
(
cij)是一個(gè)m
n矩陣,其中三、矩陣與矩陣相乘(i=1,2,···,m;j=1,2,···,n).并把此乘積記作C=AB.例1:例2:2021/6/274例3:
求AB,其中
注意:只有當(dāng)?shù)谝粋€(gè)矩陣的列數(shù)等于第二個(gè)矩陣的行數(shù)時(shí),兩個(gè)矩陣才能相乘.例如:不存在.2021/6/275矩陣乘法的運(yùn)算規(guī)律(1)結(jié)合律:(AB)C
=
A(BC);(2)分配律:A(B+C)
=
AB+AC,(B+C)A
=BA+CA;(3)
(AB)
=
(
A)B
=
A(
B),其中
為數(shù);(4)Am
nEn=EmAm
n=A;并且滿足冪運(yùn)算律:AkAm=Ak+m,(Am)k=Amk,其中k,m為正整數(shù).注意:矩陣乘法不滿足交換律,即:
AB
AB,(5)若A是n階方陣,則Ak為A的k次冪,即例如:
設(shè)則(AB)k
AkBk,因此,2021/6/276故,AB
BA.例4:
計(jì)算下列矩陣乘積:(1)(2)解(1):解(2):=()a11x1+a21x2+a31x3a12x1+a22x2+a32x3a13x1+a23x2+a33x32021/6/277當(dāng)矩陣為對稱矩陣時(shí),結(jié)果為=(a11x1+a21x2+a31x3)x1+(a12x1+a22x2+a32x3)x2+(a13x1+a23x2+a33x3)x3解:例5:2021/6/278由此歸納出用數(shù)學(xué)歸納法證明.當(dāng)k=2時(shí),顯然成立.假設(shè),當(dāng)k=n時(shí)結(jié)論成立,對k=n+1時(shí),2021/6/279所以對于任意的k
都有:2021/6/2710四、矩陣的其它運(yùn)算
定義:
把矩陣A的行列互換,所得到的新矩陣,叫做矩陣A的轉(zhuǎn)置矩陣,記作AT.例如:1、轉(zhuǎn)置矩陣(1)(AT)T=A;(2)(A+B)T=AT+BT;(3)(
A)T=
AT;(4)(AB)T=BTAT;轉(zhuǎn)置矩陣的運(yùn)算性質(zhì)2021/6/2711解法1:因?yàn)槔?:
已知求(AB)T.所以解法2:(AB)T=BTAT2021/6/2712由矩陣轉(zhuǎn)置和對稱矩陣的定義可得:方陣A為對稱矩陣的充分必要條件是:A=AT.方陣A為反對稱矩陣的充分必要條件是:–A=AT.證明:因?yàn)?/p>
例7:
設(shè)列矩陣X
=
(x1
x2···xn)T,滿足XTX=1,E為n階單位矩陣,H
=
E
–
2XXT,證明:H為對稱矩陣,且HHT=
E.HT
=
(E
–
2XXT)T=
ET–
2(XXT)T=
E
–
2XXT=
H.所以,H為對稱矩陣.HHT=
H2=(E
–
2XXT)2=E2–
E(2XXT)
–
(2XXT)E
+
(2XXT)(2XXT)=E
–
4XXT
+
4(XXT)(XXT)=E
–
4XXT
+
4X(XTX)XT=E
–
4XXT
+
4XXT=E
2021/6/2713
例7:
證明任一n
階方陣A
都可表示成對稱陣與反對稱陣之和.證明:設(shè)C
=
A
+
AT,所以,C為對稱矩陣.從而,命題得證.則CT
=
(
A
+
AT)T=
AT+
A
=
C,設(shè)B
=
A
–
AT,則BT
=
(
A
–
AT)T=
AT–
A
=
–B,所以,B為反對稱矩陣.2、方陣的行列式
定義:
由n
階方陣A的元素所構(gòu)成的行列式叫做方陣A的行列式,記作|A|或detA.例如:則2021/6/2714方陣行列式的運(yùn)算性質(zhì)(1)|AT|=|A
|;(2)|
A|=
n|A
|;(3)|AB|=|A||B|=|B||A|=|BA|.
定義:行列式|
A
|的各個(gè)元素的代數(shù)余子式Aij
所構(gòu)成的如下矩陣3、伴隨矩陣稱為矩陣A的伴隨矩陣.性質(zhì):AA*
=A*A=|
A
|E.證明:設(shè)A=(aij),AA*=(bij).2021/6/2715則故同理可得AA*=(|
A
|
ij)
=|
A
|(
ij)
=
|
A
|
E.=(|
A
|
ij)
=
|
A
|(
ij)
=
|
A
|
E.A*A
=4、共軛矩陣
定義:
當(dāng)A
=
(aij)為復(fù)矩陣時(shí),用表示aij的共軛復(fù)數(shù),記,稱為A
的共軛矩陣.運(yùn)算性質(zhì)設(shè)A,B為復(fù)矩陣,
為復(fù)數(shù),且運(yùn)算都是可行的,則:2021/6/2716矩陣運(yùn)算加法數(shù)與矩陣相乘矩陣與矩陣相乘轉(zhuǎn)置矩陣對稱陣與伴隨矩陣方陣的行列式共軛矩陣五、小結(jié)(1)只有當(dāng)兩個(gè)矩陣是同型矩陣時(shí),才能進(jìn)行加法運(yùn)算.(2)只有當(dāng)?shù)谝粋€(gè)矩陣的列數(shù)等于第二個(gè)矩陣的行數(shù)時(shí),兩個(gè)矩陣才能相乘,且矩陣相乘不滿足交換律.(3)矩陣的數(shù)乘運(yùn)算與行列式的數(shù)乘運(yùn)算不同.注意2021/6/2717思考題思考題解答
設(shè)A與B為n階方陣,等式A2–
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年活動計(jì)劃字 活動計(jì)劃和活動方案
- FY-SP-007基礎(chǔ)設(shè)施與工作環(huán)境管理程序
- 地鐵建設(shè)相關(guān)行業(yè)投資規(guī)劃報(bào)告范本
- 抗狂犬病血清相關(guān)行業(yè)投資方案范本
- 人教版八年級上冊 歷史與社會 說課稿 4.2隋唐:開放個(gè)新的時(shí)代
- 2025年血液管理中學(xué)個(gè)人工作計(jì)劃范文
- 2024年反腐倡廉知識競賽試題庫及答案(共120題)
- 網(wǎng)絡(luò)科技行業(yè)美工工作總結(jié)
- 2025年教學(xué)部門個(gè)人工作計(jì)劃
- 酒店客人投訴解決總結(jié)
- PPT中國地圖素材(可修改顏色)
- 2023年深國交入學(xué)考試英語模擬試題
- 2022年中國農(nóng)業(yè)銀行(廣東分行)校園招聘筆試試題及答案解析
- 品牌管理第五章品牌體驗(yàn)課件
- 基于CAN通訊的儲能變流器并機(jī)方案及應(yīng)用分析報(bào)告-培訓(xùn)課件
- 保姆級別CDH安裝運(yùn)維手冊
- 菌草技術(shù)及產(chǎn)業(yè)化應(yīng)用課件
- GB∕T 14527-2021 復(fù)合阻尼隔振器和復(fù)合阻尼器
- 隧道二襯、仰拱施工方案
- 顫病(帕金森?。┲嗅t(yī)護(hù)理常規(guī)
- 果膠項(xiàng)目商業(yè)計(jì)劃書(模板范本)
評論
0/150
提交評論