上海市浦東新區(qū)建平中學(xué)西校2024-2025學(xué)年上學(xué)期八年級(jí)期中數(shù)學(xué)試卷_第1頁
上海市浦東新區(qū)建平中學(xué)西校2024-2025學(xué)年上學(xué)期八年級(jí)期中數(shù)學(xué)試卷_第2頁
上海市浦東新區(qū)建平中學(xué)西校2024-2025學(xué)年上學(xué)期八年級(jí)期中數(shù)學(xué)試卷_第3頁
上海市浦東新區(qū)建平中學(xué)西校2024-2025學(xué)年上學(xué)期八年級(jí)期中數(shù)學(xué)試卷_第4頁
上海市浦東新區(qū)建平中學(xué)西校2024-2025學(xué)年上學(xué)期八年級(jí)期中數(shù)學(xué)試卷_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第1頁(共1頁)2024-2025學(xué)年上海市浦東新區(qū)建平中學(xué)西校八年級(jí)(上)期中數(shù)學(xué)試卷一、選擇題1.(3分)下列各組二次根式中,屬于同類二次根式的是()A. B. C. D.2.(3分)下列方程中,是一元二次方程的是()A.4x2=3y B.x(x+1)=5x2﹣1 C.﹣3=5x2﹣ D.+3x﹣1=03.(3分)下列代數(shù)式中,+1的一個(gè)有理化因式是()A. B. C.+1 D.﹣14.(3分)已知點(diǎn)A(1,y1),B(2,y2),C(﹣2,y3)都在反比例函數(shù)y=(k>0)的圖象上,則()A.y1>y2>y3 B.y3>y2>y1 C.y2>y3>y1 D.y1>y3>y25.(3分)若x是整數(shù),且有意義,則的值是()A.0或5 B.1或3 C.0或1 D.3或56.(3分)若x=b是方程x2﹣ax+b=0的根(b≠0),則a﹣b的值為()A. B.0 C.1 D.﹣1二、填空題7.(3分)函數(shù)的定義域是.8.(3分)化簡:=.9.(3分)已知函數(shù)f(x)=,則f()=.10.(3分)在實(shí)數(shù)范圍內(nèi)分解因式x2﹣4x﹣1=.11.(3分)方程2x2=x的根是.12.(3分)已知關(guān)于x的方程x2+kx﹣6=0的一個(gè)根為3,那么它的另一個(gè)根是.13.(3分)若函數(shù)y=(k﹣1)x(k≠1),當(dāng)自變量取值增加1的時(shí)候,函數(shù)值減少2,那么k的值是.14.(3分)等腰三角形兩邊長分別是和,那么這個(gè)等腰三角形的周長是.15.(3分)已知方程有兩個(gè)不等實(shí)根,那么k的取值范圍是.16.(3分)在課堂小結(jié)描述每一個(gè)反比例函數(shù)的性質(zhì)時(shí),甲同學(xué)說:“從這個(gè)反比例函數(shù)圖象上任意一點(diǎn)向x軸、y軸作垂線,與兩坐標(biāo)軸所圍成的矩形面積為2024.”乙同學(xué)說:“這個(gè)反比例函數(shù)在相同的象限內(nèi),y隨著x增大而增大.”根據(jù)這兩位同學(xué)所描述,此反比例函數(shù)的解析式是.17.(3分)無論x取什么整數(shù),的值都是整數(shù),那么n的值為.18.(3分)如圖,正方形ABCD的頂點(diǎn)A、C分別在x軸、y軸正半軸上,頂點(diǎn)B在雙曲線(x>0)上,頂點(diǎn)D在雙曲線(x<0)上,則正方形ABCD的面積為.三、簡答題19.計(jì)算:.20.計(jì)算:.21.解方程:x(x﹣3)﹣2(3﹣x)=0.22.解方程:x2﹣(1+2)x+3+=0.23.若x為實(shí)數(shù),求的值.24.先化簡,后求值:,其中a=,b=2.25.已知:y=y(tǒng)1+y2,并且y1與(x﹣1)成正比例,y2與x成反比例.當(dāng)x=2時(shí),y=5;x=﹣2時(shí),y=﹣11.(1)求y關(guān)于x的函數(shù)解析式;(2)當(dāng)x=4時(shí),y的值是多少?26.已知△ABC的兩邊a,b是關(guān)于x的方程x2﹣(3k+1)x+2k2+2k=0的兩個(gè)實(shí)數(shù)根,第三邊c的長度是6,那么k為何值時(shí),△ABC是等腰三角形?27.某小組進(jìn)行漂洗實(shí)驗(yàn),每次漂洗的衣服量和添加的洗衣粉數(shù)量不變.實(shí)驗(yàn)發(fā)現(xiàn),每次漂洗用水量m(升)一定時(shí),衣服中殘留的洗衣粉量y(克)與漂洗次數(shù)x(次)滿足(k為常數(shù)).已知使用5升水,漂洗1次后,衣服中殘留的洗衣粉量為2克,請(qǐng)回答下列問題:(1)求k的值;(2)如果每次用水5升,要求漂洗后殘留的洗衣粉量小于0.8克,那么至少要漂洗多少次?28.面對(duì)一些二次根式,其實(shí)可以用了因式分解中的分組分解法來解決問題:,則.利用這種思想,解決下列問題:(1)化簡:;(2)化簡:;(3)化簡:.

2024-2025學(xué)年上海市浦東新區(qū)建平中學(xué)西校八年級(jí)(上)期中數(shù)學(xué)試卷參考答案與試題解析一、選擇題1.(3分)下列各組二次根式中,屬于同類二次根式的是()A. B. C. D.【分析】將各選項(xiàng)中的二次根式化為最簡,然后根據(jù)同類二次根式的被開方數(shù)相同即可判斷出答案.【解答】解:A、=,=3,兩者被開方數(shù)相同,是同類二次根式,故本選項(xiàng)正確;B、與3,兩者被開方數(shù)不相同,不是同類二次根式,故本選項(xiàng)錯(cuò)誤;C、=,,兩者被開方數(shù)不相同,不是同類二次根式,故本選項(xiàng)錯(cuò)誤;D、3,,兩者被開方數(shù)不相同,不是同類二次根式,故本選項(xiàng)錯(cuò)誤.故選:A.【點(diǎn)評(píng)】此題考查了同類二次根式的知識(shí),屬于基礎(chǔ)題,解答本題需要掌握二次根式的化簡法則及同類二次根式的被開方數(shù)相同.2.(3分)下列方程中,是一元二次方程的是()A.4x2=3y B.x(x+1)=5x2﹣1 C.﹣3=5x2﹣ D.+3x﹣1=0【分析】根據(jù)一元二次方程的定義求解.一元二次方程必須滿足兩個(gè)條件:(1)未知數(shù)的最高次數(shù)是2;(2)二次項(xiàng)系數(shù)不為0.由這兩個(gè)條件得到相應(yīng)的關(guān)系式,再求解即可.【解答】解:A、4x2=3y是二元二次方程,故A錯(cuò)誤;B、x(x+1)=5x2﹣1是一元二次方程,故B正確;C、﹣3=5x2﹣是無理方程,故C錯(cuò)誤;D、+3x﹣1=0是分式方程,故D錯(cuò)誤;故選:B.【點(diǎn)評(píng)】本題利用了一元二次方程的概念.只有一個(gè)未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特別要注意a≠0的條件.這是在做題過程中容易忽視的知識(shí)點(diǎn).3.(3分)下列代數(shù)式中,+1的一個(gè)有理化因式是()A. B. C.+1 D.﹣1【分析】根據(jù)有理化因式的定義進(jìn)行求解即可.兩個(gè)含有根式的代數(shù)式相乘,如果它們的積不含有根式,那么這兩個(gè)代數(shù)式相互叫做有理化因式.【解答】解:∵由平方差公式,()()=x﹣1,∴的有理化因式是,故選:D.【點(diǎn)評(píng)】本題主要考查了對(duì)有理化因式的理解,正確選擇兩個(gè)二次根式,使它們的積符合平方差公式是解答問題的關(guān)鍵.4.(3分)已知點(diǎn)A(1,y1),B(2,y2),C(﹣2,y3)都在反比例函數(shù)y=(k>0)的圖象上,則()A.y1>y2>y3 B.y3>y2>y1 C.y2>y3>y1 D.y1>y3>y2【分析】畫出函數(shù)圖象,利用圖象法即可解決問題.【解答】解:函數(shù)圖象如圖所示:y1>y2>y3,故選:A.【點(diǎn)評(píng)】本題考查反比例函數(shù)圖象上的點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是學(xué)會(huì)利用圖象法解決問題,屬于中考??碱}型.5.(3分)若x是整數(shù),且有意義,則的值是()A.0或5 B.1或3 C.0或1 D.3或5【分析】根據(jù)二次根式有意義的條件即可求得答案.【解答】解:∵有意義,∴,解得:3≤x≤5,∵x是整數(shù),∴x=3或4或5,原式=0或1,故選:C.【點(diǎn)評(píng)】本題考查二次根式的乘除法,二次根式有意義的條件,熟練掌握相關(guān)運(yùn)算法則是解題的關(guān)鍵.6.(3分)若x=b是方程x2﹣ax+b=0的根(b≠0),則a﹣b的值為()A. B.0 C.1 D.﹣1【分析】x=b是方程x2﹣ax+b=0的根,知b2﹣ab+b=0,即b(b﹣a+1)=0,結(jié)合b≠0可得b﹣a+1=0,據(jù)此可得答案.【解答】解:∵x=b是方程x2﹣ax+b=0的根,∴b2﹣ab+b=0,即b(b﹣a+1)=0,∵b≠0,∴b﹣a+1=0,則a﹣b=1,故選:C.【點(diǎn)評(píng)】本題主要考查一元二次方程的解,能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.又因?yàn)橹缓幸粋€(gè)未知數(shù)的方程的解也叫做這個(gè)方程的根,所以,一元二次方程的解也稱為一元二次方程的根.二、填空題7.(3分)函數(shù)的定義域是x≥3.【分析】根據(jù)二次根式的性質(zhì)的意義,被開方數(shù)大于或等于0,可以求出x的范圍.【解答】解:根據(jù)題意得:x﹣3≥0,解得:x≥3.故答案為x≥3.【點(diǎn)評(píng)】本題考查了函數(shù)自變量的取值范圍問題,函數(shù)自變量的范圍一般從三個(gè)方面考慮:(1)當(dāng)函數(shù)表達(dá)式是整式時(shí),自變量可取全體實(shí)數(shù);(2)當(dāng)函數(shù)表達(dá)式是分式時(shí),考慮分式的分母不能為0;(3)當(dāng)函數(shù)表達(dá)式是二次根式時(shí),被開方數(shù)非負(fù).8.(3分)化簡:=π﹣3.【分析】根據(jù)二次根式的性質(zhì)解答.【解答】解:∵π>3,∴π﹣3>0;∴=π﹣3.【點(diǎn)評(píng)】解答此題,要弄清性質(zhì):=|a|,去絕對(duì)值的法則.9.(3分)已知函數(shù)f(x)=,則f()=﹣1.【分析】把x=代入函數(shù)關(guān)系式求值即可.【解答】解:因?yàn)楹瘮?shù)f(x)=,所以f()===﹣1.故答案為:﹣1.【點(diǎn)評(píng)】本題考查了求函數(shù)的值,解題的關(guān)鍵能夠正確分母有理化.10.(3分)在實(shí)數(shù)范圍內(nèi)分解因式x2﹣4x﹣1=(x﹣2+)(x﹣2﹣).【分析】根據(jù)完全平方公式配方,然后再把5寫成()2利用平方差公式繼續(xù)分解因式.【解答】解:原式=x2﹣4x+4﹣5=(x﹣2)2﹣5=(x﹣2+)(x﹣2﹣).故答案為:(x﹣2+)(x﹣2﹣).【點(diǎn)評(píng)】本題考查了實(shí)數(shù)范圍內(nèi)因式分解,主要利用了完全平方公式以及平方差公式,把5寫成()2的形式是解題的關(guān)鍵.11.(3分)方程2x2=x的根是x1=0,x2=.【分析】移項(xiàng)后分解因式,即可得出兩個(gè)一元一次方程,求出方程的解即可.【解答】解:2x2=x,2x2﹣x=0,x(2x﹣1)=0,x=0,2x﹣1=0,x1=0,x2=,故答案為:x1=0,x2=.【點(diǎn)評(píng)】本題考查了解一元二次方程的應(yīng)用,解此題的關(guān)鍵是能把一元二次方程轉(zhuǎn)化成一元一次方程,難度適中.12.(3分)已知關(guān)于x的方程x2+kx﹣6=0的一個(gè)根為3,那么它的另一個(gè)根是﹣2.【分析】設(shè)另一個(gè)根為m,構(gòu)建方程求解.【解答】解:設(shè)另一個(gè)根為m,則有3m=﹣6,∴m=﹣2.故答案為:﹣2.【點(diǎn)評(píng)】本題考查根與系數(shù)的關(guān)系,解題的關(guān)鍵是掌握x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時(shí),x1+x2=﹣,x1x2=.13.(3分)若函數(shù)y=(k﹣1)x(k≠1),當(dāng)自變量取值增加1的時(shí)候,函數(shù)值減少2,那么k的值是﹣1.【分析】由于自變量取值增加1,函數(shù)值就相應(yīng)減少2,則y﹣2=(k﹣1)(x+1),然后把y=(k﹣1)x代入可求出k的值.【解答】解:根據(jù)題意得y﹣2=(k﹣1)(x+1),而y=(k﹣1)x,所以k=﹣1.故答案為:﹣1.【點(diǎn)評(píng)】本題考查了正比例函數(shù)的性質(zhì),熟練掌握正比例函數(shù)的性質(zhì)是解題的關(guān)鍵.14.(3分)等腰三角形兩邊長分別是和,那么這個(gè)等腰三角形的周長是8.【分析】題目給出等腰三角形有兩條邊長是和,而沒有明確腰、底分別是多少,所以要進(jìn)行討論,還要應(yīng)用三角形的三邊關(guān)系驗(yàn)證能否組成三角形.【解答】解:分情況討論:①當(dāng)三邊是4,4,時(shí),符合三角形的三邊關(guān)系,此時(shí)周長為8;②當(dāng)三角形的三邊是,,4時(shí),不符合三角形的三邊關(guān)系,構(gòu)成不了三角形.∴這個(gè)等腰三角形的周長是8;故答案為:8.【點(diǎn)評(píng)】本題考查了等腰三角形的性質(zhì)和三角形的三邊關(guān)系;已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進(jìn)行討論,還應(yīng)驗(yàn)證各種情況是否能構(gòu)成三角形進(jìn)行解答,這點(diǎn)非常重要,也是解題的關(guān)鍵.15.(3分)已知方程有兩個(gè)不等實(shí)根,那么k的取值范圍是﹣2≤k<2.【分析】一元二次方程兩個(gè)不等實(shí)根,即Δ>0,從而得出關(guān)于k的不等式,通過解不等式求得k的取值范圍即可.【解答】解:∵關(guān)于x的方程有兩個(gè)不等實(shí)根,∴(﹣)2﹣4k>0且2k+4≥0,解得﹣2≤k<2.故答案為:﹣2≤k<2.【點(diǎn)評(píng)】本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))根的判別式.當(dāng)Δ>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)Δ=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)Δ<0,方程沒有實(shí)數(shù)根.16.(3分)在課堂小結(jié)描述每一個(gè)反比例函數(shù)的性質(zhì)時(shí),甲同學(xué)說:“從這個(gè)反比例函數(shù)圖象上任意一點(diǎn)向x軸、y軸作垂線,與兩坐標(biāo)軸所圍成的矩形面積為2024.”乙同學(xué)說:“這個(gè)反比例函數(shù)在相同的象限內(nèi),y隨著x增大而增大.”根據(jù)這兩位同學(xué)所描述,此反比例函數(shù)的解析式是y=﹣.【分析】根據(jù)甲同學(xué)的說法確定|k|=2024,再根據(jù)乙同學(xué)的說法確定k=﹣2024,繼而得到反比例函數(shù)的解析式即可.【解答】解:根據(jù)題意,滿足甲乙兩同學(xué)說法的反比例函數(shù)解析式為:y=﹣,故答案為:y=﹣,【點(diǎn)評(píng)】本題考查了反比例函數(shù)k值的幾何意義、反比例函數(shù)的性質(zhì),熟練掌握以上知識(shí)點(diǎn)是關(guān)鍵.17.(3分)無論x取什么整數(shù),的值都是整數(shù),那么n的值為9或1.【分析】根據(jù)二次根式的性質(zhì)與化簡得出x2﹣(n﹣3)x+n是完全平方式,設(shè)出這個(gè)完全平方式得到x2﹣(n﹣3)x+n=(x+m)2,進(jìn)而求出m的值,再代入求出n的值即可.【解答】解:∵無論x取什么整數(shù),的值都是整數(shù),∴x2﹣(n﹣3)x+n是完全平方式,設(shè)x2﹣(n﹣3)x+n=(x+m)2,則x2﹣(n﹣3)x+n=x2+2mx+m2,∴2m=﹣(n﹣3),m2=n,∴2m=﹣n+3,∴n=3﹣2m,∴m2=3﹣2m,即m2+2m﹣3=0,解得:m=﹣3或m=1,當(dāng)m=﹣3時(shí),n=m2=(﹣3)2=9,當(dāng)m=1時(shí),n=m2=12=1,∴n=9或1.故答案為:9或1.【點(diǎn)評(píng)】本題考查了二次根式的性質(zhì)與化簡,完全平方式,掌握二次根式的性質(zhì),完全平方式的結(jié)構(gòu)是解題的關(guān)鍵.18.(3分)如圖,正方形ABCD的頂點(diǎn)A、C分別在x軸、y軸正半軸上,頂點(diǎn)B在雙曲線(x>0)上,頂點(diǎn)D在雙曲線(x<0)上,則正方形ABCD的面積為6.【分析】過點(diǎn)B作BE⊥y軸于E,作BM⊥x軸于M,過點(diǎn)D作DF⊥y軸于F,作DN⊥x軸于N,可得四邊形OMBE是矩形,然后求出∠EBM=90°,再根據(jù)正方形的性質(zhì)可得AB=BC,∠ABC=90°,然后根據(jù)同角的余角相等求出∠ABM=∠CBE,利用“角角邊”證明△ABM和△CBE全等,根據(jù)全等三角形的面積相等可得S△ABM=S△CBE,同理可得S△ADN=S△CDF,從而得到正方形ABCD的面積=S矩形OMBE+S矩形ONDF,再根據(jù)反比例函數(shù)系數(shù)k的幾何意義解答即可.【解答】解:如圖,過點(diǎn)B作BE⊥y軸于E,作BM⊥x軸于M,過點(diǎn)D作DF⊥y軸于F,作DN⊥x軸于N,則四邊形OMBE是矩形,∴∠EBM=90°,在正方形ABCD中,AB=BC,∠ABC=90°,∠ABM+∠ABE=∠CBE+∠ABE=90°,∴∠ABM=∠CBE,在△ABM和△CBE中,,∴△ABM≌△CBE(AAS),∴S△ABM=S△CBE,同理可得S△ADN=S△CDF,∴正方形ABCD的面積=S矩形OMBE+S矩形ONDF,∵點(diǎn)B在雙曲線y=上,點(diǎn)D在雙曲線y=﹣上,∴正方形ABCD的面積=4+2=6.故答案為:6.【點(diǎn)評(píng)】本題考查了正方形的性質(zhì),反比例函數(shù)系數(shù)k的幾何意義,作輔助線構(gòu)造出全等三角形并把正方形的面積轉(zhuǎn)化為兩個(gè)矩形的面積的和是解題的關(guān)鍵.三、簡答題19.計(jì)算:.【分析】先去括號(hào),再把各根式化為最簡二次根式,再合并同類二次根式即可.【解答】解:原式=﹣6﹣4+=﹣﹣﹣=﹣.【點(diǎn)評(píng)】本題考查的是二次根式的加減法,熟知二次根式的加減法則是解題的關(guān)鍵.20.計(jì)算:.【分析】先把除法運(yùn)算轉(zhuǎn)化為乘法運(yùn)算,然后根據(jù)二次根式的除法法則運(yùn)算.【解答】解:原式=(+)×=+=+.【點(diǎn)評(píng)】本題考查了二次根式的混合運(yùn)算:熟練掌握二次根式的性質(zhì)、二次根式的除法法則是解決問題的關(guān)鍵.21.解方程:x(x﹣3)﹣2(3﹣x)=0.【分析】利用因式分解法對(duì)所給一元二次方程進(jìn)行求解即可.【解答】解:x(x﹣3)﹣2(3﹣x)=0,x(x﹣3)+2(x﹣3)=0,(x﹣3)(x+2)=0,則x﹣3=0或x+2=0,所以x1=3,x2=﹣2.【點(diǎn)評(píng)】本題主要考查了解一元二次方程﹣因式分解法,熟知因式分解法解一元二次方程的步驟是解題的關(guān)鍵.22.解方程:x2﹣(1+2)x+3+=0.【分析】用十字相乘法因式分解求出方程的根.【解答】解:分解因式得:(x﹣)(x﹣1﹣)=0,∴x﹣=0或x﹣1﹣=0,解得:x1=,x2=1+.【點(diǎn)評(píng)】此題考查了解一元二次方程﹣因式分解法,熟練掌握十字相乘法進(jìn)行因式分解是解本題的關(guān)鍵.23.若x為實(shí)數(shù),求的值.【分析】根據(jù)二次根式有意義的條件求出x的值,然后根據(jù)二次根式的性質(zhì)化簡即可.【解答】解:根據(jù)題意得,,解得,∴==0+﹣+0=﹣1.【點(diǎn)評(píng)】本題考查了二次根式有意義的條件,二次根式的性質(zhì)與化簡,正確求出x的值是解題的關(guān)鍵.24.先化簡,后求值:,其中a=,b=2.【分析】先分別將分子、分母進(jìn)行因式分解,再約分、合并同類項(xiàng)得到最簡結(jié)果,最后將a,b的值代入計(jì)算即可.【解答】解:原式==+=.當(dāng)a=,b=2時(shí),原式===.【點(diǎn)評(píng)】本題考查二次根式的化簡求值、分式的化簡求值、分母有理化,熟練掌握運(yùn)算法則是解答本題的關(guān)鍵.25.已知:y=y(tǒng)1+y2,并且y1與(x﹣1)成正比例,y2與x成反比例.當(dāng)x=2時(shí),y=5;x=﹣2時(shí),y=﹣11.(1)求y關(guān)于x的函數(shù)解析式;(2)當(dāng)x=4時(shí),y的值是多少?【分析】(1)依題意可設(shè)設(shè)y1=k1(x﹣1),y2=,進(jìn)而得y=k1(x﹣1)+,再根據(jù)當(dāng)x=2時(shí),y=5;x=﹣2時(shí),y=﹣11,,由此解出k1,k2即可得出y關(guān)于x的函數(shù)解析式;(2)將x=4代入(1)中所求的y關(guān)于x的函數(shù)解析式進(jìn)行計(jì)算即可得出答案.【解答】解:∵y1與(x﹣1)成正比例,∴設(shè)y1=k1(x﹣1),∵y2與x成反比例,∴設(shè)y2=,∵y=y(tǒng)1+y2,∴y=k1(x﹣1)+,∵當(dāng)x=2時(shí),y=5;x=﹣2時(shí),y=﹣11,∴,解得:,∴y關(guān)于x的函數(shù)解析式是:y=3(x﹣1)+,即;(2)當(dāng)x=4時(shí),y==10.【點(diǎn)評(píng)】此題主要考查了待定系數(shù)法求反比例函數(shù)解析式,待定系數(shù)法求一次函數(shù)解析式,理解正比例函數(shù)和反比例函數(shù)的定義,熟練掌握待定系數(shù)法求反比例函數(shù)和求一次函數(shù)解析式,及求函數(shù)值的方法是解決問題的關(guān)鍵.26.已知△ABC的兩邊a,b是關(guān)于x的方程x2﹣(3k+1)x+2k2+2k=0的兩個(gè)實(shí)數(shù)根,第三邊c的長度是6,那么k為何值時(shí),△ABC是等腰三角形?【分析】根據(jù)等腰三角形的性質(zhì)以及一元二次方程的解法即可求出答案.【解答】解:當(dāng)a、b是腰時(shí),∴Δ=(3k+1)2﹣4(2k2+2k)=0,解得k=1,∴該方程為x2﹣4x+4=0,∴a=b=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論