新高考數(shù)學(xué)二輪復(fù)習(xí) 題型歸納演練專題3-7 利用導(dǎo)函數(shù)研究雙變量問題原卷版_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí) 題型歸納演練專題3-7 利用導(dǎo)函數(shù)研究雙變量問題原卷版_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí) 題型歸納演練專題3-7 利用導(dǎo)函數(shù)研究雙變量問題原卷版_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí) 題型歸納演練專題3-7 利用導(dǎo)函數(shù)研究雙變量問題原卷版_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí) 題型歸納演練專題3-7 利用導(dǎo)函數(shù)研究雙變量問題原卷版_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題3-7利用導(dǎo)函數(shù)研究雙變量問題目錄TOC\o"1-1"\h\u專題3-7利用導(dǎo)函數(shù)研究雙變量問題 1 1題型一:分離雙參,構(gòu)造函數(shù) 1②根據(jù)分離后的不等式結(jié)構(gòu)的對稱性,構(gòu)造新函數(shù); 3題型二:糅合雙參(比值糅合) 6題型三:糅合雙參(差值糅合) 14題型四:利用對數(shù)平均(指數(shù)平均)不等式解決雙變量問題 19題型五:最值定位法解決雙參不等式問題 26 34題型一:分離雙參,構(gòu)造函數(shù)【典例分析】例題1.(2022·遼寧·沈陽市第三十一中學(xué)高三階段練習(xí))SKIPIF1<0,均有SKIPIF1<0成立,則SKIPIF1<0的取值范圍為___________.例題2.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)證明:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【提分秘籍】①在含有雙參(SKIPIF1<0,SKIPIF1<0)的不等式中,將雙參分別分離到不等式左右兩邊;②根據(jù)分離后的不等式結(jié)構(gòu)的對稱性,構(gòu)造新函數(shù);③證明構(gòu)造函數(shù)的單調(diào)性,利用單調(diào)性證明結(jié)論【變式演練】1.(2022·四川·閬中中學(xué)高二階段練習(xí)(理))若實數(shù)SKIPIF1<0滿足SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022·廣西玉林·模擬預(yù)測(理))已知SKIPIF1<0,SKIPIF1<0都是正整數(shù),且SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2021·四川省瀘縣第二中學(xué)一模(理))已知函數(shù)SKIPIF1<0的圖像在SKIPIF1<0處的切線與直線SKIPIF1<0平行.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)若SKIPIF1<0,且SKIPIF1<0時,SKIPIF1<0,求實數(shù)m的取值范圍.題型二:糅合雙參(比值糅合)【典例分析】例題1.(2022·山東德州·高三期中)已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0在SKIPIF1<0的最小值;(2)若方程SKIPIF1<0有兩個不同的解SKIPIF1<0,且SKIPIF1<0成等差數(shù)列,試探究SKIPIF1<0值的符號.例題2.(2022·山東威?!と#┮阎瘮?shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求SKIPIF1<0的單調(diào)區(qū)間;(2)若SKIPIF1<0有兩個極值點SKIPIF1<0,且SKIPIF1<0,從下面兩個結(jié)論中選一個證明.①SKIPIF1<0;【提分秘籍】利用換元法解決雙變量問題,將要證明的不等式或目標(biāo)代數(shù)式通過變形成關(guān)于SKIPIF1<0(或SKIPIF1<0等)的整體結(jié)構(gòu),通過將SKIPIF1<0(或SKIPIF1<0等)換元成SKIPIF1<0把問題化歸成單變量問題來處理.這一方法也稱為“齊次換元”?!咀兪窖菥殹?.(2022·全國·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0,(1)求SKIPIF1<0的單調(diào)區(qū)間;(2)設(shè)SKIPIF1<0,求證:SKIPIF1<0,恒有SKIPIF1<0.(3)若SKIPIF1<0,函數(shù)SKIPIF1<0有兩個零點SKIPIF1<0,求證SKIPIF1<0.2.(2022·廣東·廣州市第七中學(xué)高二期中)已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若函數(shù)SKIPIF1<0的圖像與x軸交于A,B兩點,線段SKIPIF1<0中點的橫坐標(biāo)為SKIPIF1<0,證明:SKIPIF1<0.3.(2022·陜西師大附中高三期中(理))已知函數(shù)SKIPIF1<0,曲線SKIPIF1<0在點SKIPIF1<0處的切線與直線SKIPIF1<0垂直.(1)試比較SKIPIF1<0與SKIPIF1<0的大小,并說明理由;(2)若函數(shù)SKIPIF1<0有兩個不同的零點SKIPIF1<0,證明:SKIPIF1<0.題型三:糅合雙參(差值糅合)【典例分析】例題1.(2022·江蘇江蘇·高三期末)設(shè)SKIPIF1<0,SKIPIF1<0.(1)設(shè)SKIPIF1<0,討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若函數(shù)SKIPIF1<0在SKIPIF1<0有兩個零點SKIPIF1<0,SKIPIF1<0,證明:SKIPIF1<0.【提分秘籍】利用換元法解決雙變量問題,將要證明的不等式或目標(biāo)代數(shù)式通過變形成關(guān)于SKIPIF1<0(或SKIPIF1<0等)的整體結(jié)構(gòu),通過將SKIPIF1<0(或SKIPIF1<0等)換元成SKIPIF1<0把問題化歸成單變量問題來處理.這一方法也稱為“齊次換元”?!咀兪窖菥殹?.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求曲線SKIPIF1<0在點SKIPIF1<0處的切線方程;(2)當(dāng)SKIPIF1<0時,若函數(shù)SKIPIF1<0,求SKIPIF1<0的單調(diào)區(qū)間;(3)當(dāng)SKIPIF1<0時,若函數(shù)SKIPIF1<0恰有兩個不同的極值點SKIPIF1<0、SKIPIF1<0,且SKIPIF1<0,求證:SKIPIF1<0.題型四:利用對數(shù)平均(指數(shù)平均)不等式解決雙變量問題【典例分析】例題1、已知函數(shù)SKIPIF1<0(SKIPIF1<0為常數(shù))有兩個不同的零點SKIPIF1<0,SKIPIF1<0(SKIPIF1<0為自然對數(shù)的底數(shù))請證明:SKIPIF1<0.例題2.(2022·重慶·高二階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)求證:SKIPIF1<0,SKIPIF1<0;(2)若存在SKIPIF1<0、SKIPIF1<0,且當(dāng)SKIPIF1<0時,使得SKIPIF1<0成立,求證:SKIPIF1<0.【提分秘籍】1.對數(shù)均值不等式法兩個正數(shù)SKIPIF1<0和SKIPIF1<0的對數(shù)平均定義:SKIPIF1<0對數(shù)平均與算術(shù)平均、幾何平均的大小關(guān)系:SKIPIF1<0(此式記為對數(shù)平均不等式)取等條件:當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立.2.指數(shù)不等式法在對數(shù)均值不等式中,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,根據(jù)對數(shù)均值不等式有如下關(guān)系:SKIPIF1<0【變式演練】1.(2022·湖北·武漢市第一中學(xué)高二期中)已知函數(shù)SKIPIF1<0有兩個零點SKIPIF1<0、SKIPIF1<0,則下列說法正確的是(

).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·全國·高二期末)已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,當(dāng)SKIPIF1<0時,試比較SKIPIF1<0與SKIPIF1<0的大??;(2)若SKIPIF1<0的兩個不同零點分別為SKIPIF1<0、SKIPIF1<0,求證:SKIPIF1<0.3.(2022·廣東·深圳市第七高級中學(xué)高三階段練習(xí))已知SKIPIF1<0為自然對數(shù)的底數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若函數(shù)SKIPIF1<0有兩個不同零點SKIPIF1<0,求證:SKIPIF1<0.題型五:最值定位法解決雙參不等式問題【典例分析】例題1.(2022·黑龍江齊齊哈爾·高三期中)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)若對于任意的SKIPIF1<0,都存在SKIPIF1<0,使得SKIPIF1<0成立,試求實數(shù)SKIPIF1<0的取值范圍.例題2.(2022·全國·高二專題練習(xí))已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)設(shè)SKIPIF1<0(SKIPIF1<0為自然對數(shù)的底數(shù)),當(dāng)SKIPIF1<0時,對任意SKIPIF1<0,存在SKIPIF1<0,使SKIPIF1<0,求實數(shù)SKIPIF1<0的取值范圍.【提分秘籍】最值定位法解決雙參不等式問題(1)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立SKIPIF1<0SKIPIF1<0(3)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立SKIPIF1<0SKIPIF1<0(4)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立SKIPIF1<0SKIPIF1<0【變式演練】1.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,使不等式SKIPIF1<0成立,則SKIPIF1<0的取值范圍是______.2.(2022·山東聊城·高三期中)已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0時,對任意SKIPIF1<0,存在SKIPIF1<0,使SKIPIF1<0,求實數(shù)m的取值范圍.3.(2022·寧夏六盤山高級中學(xué)高三期中(理))函數(shù)SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的單調(diào)遞增區(qū)間;(2)對SKIPIF1<0,SKIPIF1<0,使SKIPIF1<0成立,求實數(shù)SKIPIF1<0的取值范圍.4.(2022·四川·成都市錦江區(qū)嘉祥外國語高級中學(xué)有限責(zé)任公司模擬預(yù)測(文))已知函數(shù)SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0.(1)試討論函數(shù)SKIPIF1<0的極值;(2)當(dāng)SKIPIF1<0時,若對任意的SKIPIF1<0,SKIPIF1<0,總有SKIPIF1<0成立,試求b的最大值.一、單選題1.(2022·山東煙臺·高三期中)若對任意正實數(shù)x,y都有SKIPIF1<0,則實數(shù)m的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022·全國·高三專題練習(xí))若對于任意的SKIPIF1<0,都有SKIPIF1<0,則SKIPIF1<0的最大值為(

)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·江西省豐城中學(xué)高三開學(xué)考試(文))已知SKIPIF1<0,SKIPIF1<0,有如下四個結(jié)論:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0滿足SKIPIF1<0;④SKIPIF1<0.則正確結(jié)論的序號是(

)A.①③ B.②③ C.①④ D.②④4.(2022·江西南昌·高二期末(理))已知SKIPIF1<0,若對于SKIPIF1<0且SKIPIF1<0都有SKIPIF1<0成立,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2021·全國·高二課時練習(xí))設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0,若對任意SKIPIF1<0、SKIPIF1<0,不等式SKIPIF1<0恒成立,則正數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<06.(2021·江蘇·高二單元測試)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,若對SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,則正實數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0 C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<07.(2021·江蘇·高二單元測試)已知函數(shù)SKIPIF1<0,SKIPIF1<0,若對任意SKIPIF1<0,存在SKIPIF1<0,SKIPIF1<0,使SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<08.(2021·河南·高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0,對SKIPIF1<0,使得SKIPIF1<0成立,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0SKIPIF1<0SKIPIF1<0二、多選題9.(2021·廣東·金山中學(xué)高二期中)已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值可能是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0三、填空題10.(2021·江西·贛州市第一中學(xué)高二階段練習(xí)(理))已知三個函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0成立,求實數(shù)b的取值范圍______.11.(2021·黑龍江·牡丹江市第三高級中學(xué)高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是________.四、解答題12.(2022·云南·昆明一中高三階段練習(xí)(文))設(shè)SKIPIF1<0,SKIPIF1<0.(1)如果存在SKIPIF1<0使得SKIPIF1<0成立,求滿足上述條件的最大值SKIPIF1<0;(2)如果對于任意的SKIPIF1<0,都有SKIPIF1<0成立,求實數(shù)SKIPIF1<0的取值范圍.13.(2022·安徽·合肥市第九中學(xué)高二期中)已知SKIPIF1<0的圖象在SKIPIF1<0處的切線與直線SKIPIF1<0平行.(1)求函數(shù)SKIPIF1<0的極值;(2)若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求實數(shù)SKIPIF1<0的取值范圍.14.(2022·河南·鄭州勵德雙語學(xué)校高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0SKIPIF1<0.(1)當(dāng)SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論