版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題3-6利用導(dǎo)函數(shù)研究方程的根(函數(shù)的零點(diǎn))目錄TOC\o"1-1"\h\u 1題型一:判斷(證明)函數(shù)零點(diǎn)個(gè)數(shù) 1題型二:利用函數(shù)極值(最值)研究函數(shù)的零點(diǎn) 9題型三:已知函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍(或值) 15題型四:利用數(shù)形結(jié)合法(等價(jià)為兩個(gè)函數(shù)圖象交點(diǎn))研究函數(shù)的零點(diǎn)(方程的根) 22題型五:以函數(shù)零點(diǎn)為背景的含雙參不等式的證明 32題型六:導(dǎo)數(shù)解決函數(shù)隱零點(diǎn)問題 44 50題型一:判斷(證明)函數(shù)零點(diǎn)個(gè)數(shù)【典例分析】例題1.(2022·河南·駐馬店開發(fā)區(qū)高級(jí)中學(xué)高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0圖象的對(duì)稱中心為SKIPIF1<0,則SKIPIF1<0的零點(diǎn)個(gè)數(shù)為(
)A.2 B.1 C.4 D.3例題2.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0,討論函數(shù)SKIPIF1<0的零點(diǎn)的個(gè)數(shù).例題3.(2022·安徽·安慶一中高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線斜率為SKIPIF1<0,求SKIPIF1<0的值;(2)當(dāng)SKIPIF1<0時(shí),判斷SKIPIF1<0在SKIPIF1<0內(nèi)有幾個(gè)零點(diǎn),并證明.【提分秘籍】1.利用導(dǎo)數(shù)研究高次式、分式、指數(shù)式、對(duì)數(shù)式、三角式及絕對(duì)值式等函數(shù)零點(diǎn)的個(gè)數(shù)(或方程根的個(gè)數(shù))問題的一般思路:(1)可轉(zhuǎn)化為用導(dǎo)數(shù)研究其函數(shù)的圖象與SKIPIF1<0軸(或直線SKIPIF1<0)在該區(qū)間上的交點(diǎn)問題;(2)利用導(dǎo)數(shù)研究該函數(shù)在該區(qū)間上的單調(diào)性、極值(最值)、端點(diǎn)值等性質(zhì),進(jìn)而畫出其圖象;(3)結(jié)合圖象求解.2.證明復(fù)雜方程在某區(qū)間上有且僅有一解的步驟:第一步,利用導(dǎo)數(shù)證明該函數(shù)在該區(qū)間上單調(diào)性,第二步,證明端點(diǎn)的導(dǎo)數(shù)值異號(hào).【變式演練】1.(2022·湖南·高三階段練習(xí))已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù)為_________.2.(2022·河南南陽·高二階段練習(xí)(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)求證:函數(shù)SKIPIF1<0有唯一的零點(diǎn),并求出此零點(diǎn);(2)求曲線SKIPIF1<0過點(diǎn)SKIPIF1<0的切線方程.3.(2022·全國(guó)·高二專題練習(xí))已知函數(shù)SKIPIF1<0.(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;(2)判斷函數(shù)f(x)的零點(diǎn)的個(gè)數(shù),并說明理由.4.(2022·全國(guó)·成都七中高三開學(xué)考試(文))設(shè)函數(shù)SKIPIF1<0?為常數(shù)).(1)討論SKIPIF1<0?的單調(diào)性;(2)討論函數(shù)SKIPIF1<0?的零點(diǎn)個(gè)數(shù).5.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0,其中SKIPIF1<0.(1)求SKIPIF1<0的極值點(diǎn)個(gè)數(shù);(2)求函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)的零點(diǎn)個(gè)數(shù).題型二:利用函數(shù)極值(最值)研究函數(shù)的零點(diǎn)【典例分析】例題1.(2022·四川·雅安中學(xué)高二階段練習(xí)(文))已知函數(shù)SKIPIF1<0在SKIPIF1<0時(shí)取得極值,且在點(diǎn)SKIPIF1<0處的切線的斜率為SKIPIF1<0.(1)求SKIPIF1<0的解析式;(2)若函數(shù)SKIPIF1<0有三個(gè)零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.例題2.(2022·寧夏·銀川一中模擬預(yù)測(cè)(文))已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0在SKIPIF1<0上有且只有一個(gè)零點(diǎn),求SKIPIF1<0在SKIPIF1<0上的最大值與最小值的和.【提分秘籍】借助導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值后,通過極值(最值)的正負(fù),函數(shù)的單調(diào)性判斷函數(shù)圖象的走勢(shì),從而判斷零點(diǎn)的個(gè)數(shù).【變式演練】1.(2022·重慶八中高二階段練習(xí))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值;(2)若函數(shù)SKIPIF1<0有三個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.2.(2022·廣東·高二階段練習(xí))已知函數(shù)SKIPIF1<0在SKIPIF1<0與SKIPIF1<0處都取得極值.(1)求實(shí)數(shù)a,b的值;(2)若函數(shù)SKIPIF1<0有三個(gè)不同的零點(diǎn),求c的范圍.3.(2022·全國(guó)·模擬預(yù)測(cè)(文))設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0為常數(shù).(1)討論SKIPIF1<0的單調(diào)性;(2)若函數(shù)SKIPIF1<0有且僅有3個(gè)零點(diǎn),求SKIPIF1<0的取值范圍.題型三:已知函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍(或值)【典例分析】例題1.(2022·貴州·貴陽一中高三階段練習(xí)(文))已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若關(guān)于SKIPIF1<0的函數(shù)SKIPIF1<0恰有4個(gè)零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例題2.(2022·全國(guó)·武功縣普集高級(jí)中學(xué)模擬預(yù)測(cè)(理))已知關(guān)于SKIPIF1<0的方程SKIPIF1<0有4個(gè)不等實(shí)數(shù)根,則SKIPIF1<0的取值范圍是______.例題3.(2022·湖南·長(zhǎng)郡中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的圖像在SKIPIF1<0處的切線方程;(2)若函數(shù)SKIPIF1<0在SKIPIF1<0上有兩個(gè)零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.【提分秘籍】轉(zhuǎn)化為用導(dǎo)數(shù)研究其函數(shù)的圖象與SKIPIF1<0軸(或直線SKIPIF1<0)在該區(qū)間上的交點(diǎn)問題;【變式演練】1.(2022·北京通州·高三期中)已知函數(shù)SKIPIF1<0設(shè)SKIPIF1<0,若函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·廣東·順德一中高三階段練習(xí))已知函數(shù)SKIPIF1<0,若f(x)在(0,+∞)內(nèi)有零點(diǎn),則a的取值范圍為___________.3.(2022·河南·高三階段練習(xí)(文))若函數(shù)SKIPIF1<0有且只有一個(gè)零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是___________.4.(2022·天津·高三期中)已知函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線斜率為4,且在SKIPIF1<0處取得極值.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)若函數(shù)SKIPIF1<0恰有兩個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.題型四:利用數(shù)形結(jié)合法(等價(jià)為兩個(gè)函數(shù)圖象交點(diǎn))研究函數(shù)的零點(diǎn)(方程的根)【典例分析】例題1.(2022·河北石家莊·高二階段練習(xí))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)若方程SKIPIF1<0有三個(gè)不同的根,求SKIPIF1<0的取值范圍.例題2.(2022·重慶市永川北山中學(xué)校模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,SKIPIF1<0(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的極值;(2)若SKIPIF1<0,函數(shù)SKIPIF1<0與SKIPIF1<0軸有兩個(gè)交點(diǎn),求SKIPIF1<0的取值范圍.例題3.(2022·山東·寧陽縣第四中學(xué)高二階段練習(xí))給定函數(shù)SKIPIF1<0.(1)判斷函數(shù)SKIPIF1<0的單調(diào)性,并求出SKIPIF1<0的極值;(2)畫出函數(shù)SKIPIF1<0的大致圖象,無須說明理由(要求:坐標(biāo)系中要標(biāo)出關(guān)鍵點(diǎn));(3)求出方程SKIPIF1<0的解的個(gè)數(shù).【提分秘籍】轉(zhuǎn)化為用導(dǎo)數(shù)研究其函數(shù)的圖象與SKIPIF1<0軸(或直線SKIPIF1<0)在該區(qū)間上的交點(diǎn)問題;【變式演練】1.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求曲線SKIPIF1<0在SKIPIF1<0處的切線方程;(2)若函數(shù)SKIPIF1<0在SKIPIF1<0上有兩個(gè)零點(diǎn),求SKIPIF1<0的取值范圍.2.(2022·遼寧·高二期中)已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)若方程SKIPIF1<0有兩個(gè)根,求a的取值范圍.3.(2022·廣東·珠海市第二中學(xué)高二期中)已知函數(shù)SKIPIF1<0(1)討論SKIPIF1<0的單調(diào)性;(2)設(shè)SKIPIF1<0,若方程SKIPIF1<0有三個(gè)不同的解,求a的取值范圍.4.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間和極值;(2)若函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0僅有一個(gè)公共點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.題型五:以函數(shù)零點(diǎn)為背景的含雙參不等式的證明【典例分析】例題1.(2022·河南·一模(文))已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的取值范圍.例題2.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0有兩個(gè)不同的零點(diǎn)(其中SKIPIF1<0為自然對(duì)數(shù)的底數(shù)).(1)當(dāng)SKIPIF1<0時(shí),求證:SKIPIF1<0;(2)求實(shí)數(shù)SKIPIF1<0的取值范圍;(3)若函數(shù)SKIPIF1<0的兩個(gè)零點(diǎn)為SKIPIF1<0,求證:SKIPIF1<0.例題3.(2022·江西鷹潭·高二期末(文))設(shè)函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)若SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的取值范圍,并證明:SKIPIF1<0.【提分秘籍】破解含雙變量不等式的證明的關(guān)鍵一是轉(zhuǎn)化,即由已知條件入手,尋找雙變量所滿足的關(guān)系式,并把含雙變量的不等式轉(zhuǎn)化為含單變量的不等式;二是巧構(gòu)造函數(shù),借助導(dǎo)數(shù),判斷函數(shù)的單調(diào)性,從而求其最值;三是回歸雙變量的不等式的證明,把所求的最值應(yīng)用到雙變量不等式,即可證得結(jié)果.【變式演練】1.(2022·全國(guó)·高三專題練習(xí)(理))已知SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)若對(duì)任意實(shí)數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0均有零點(diǎn),求實(shí)數(shù)SKIPIF1<0的最大值;(3)若函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0,證明:SKIPIF1<0.2.(2022·全國(guó)·高二課時(shí)練習(xí))已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的最小值;(2)求證:函數(shù)SKIPIF1<0存在兩個(gè)零點(diǎn)(記為SKIPIF1<0),且SKIPIF1<0.3.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0,設(shè)SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù),若函數(shù)SKIPIF1<0有兩個(gè)不同的零點(diǎn)SKIPIF1<0,求證:SKIPIF1<0.4.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0(a為常數(shù)).且SKIPIF1<0有兩個(gè)不同的極值點(diǎn)SKIPIF1<0(1)求實(shí)數(shù)a的取值范圍;(2)求證:SKIPIF1<0題型六:導(dǎo)數(shù)解決函數(shù)隱零點(diǎn)問題【典例分析】例題1.(2022·全國(guó)·高二單元測(cè)試)設(shè)SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的單調(diào)區(qū)間;(2)討論SKIPIF1<0零點(diǎn)的個(gè)數(shù);(3)當(dāng)SKIPIF1<0時(shí),設(shè)SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.例題2.(2022·遼寧·東北育才雙語學(xué)校一模)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線方程;(2)當(dāng)SKIPIF1<0時(shí),判斷SKIPIF1<0的零點(diǎn)個(gè)數(shù)并說明理由;(3)若SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍.【提分秘籍】函數(shù)隱零點(diǎn)在很多時(shí)候無法直接求出來,基本解決思路是:虛設(shè)零點(diǎn),整體代換,數(shù)值估算,等價(jià)轉(zhuǎn)化,分離參數(shù),反客為主?!咀兪窖菥殹?.(2022·全國(guó)·高二專題練習(xí))已知函數(shù)SKIPIF1<0.(Ⅰ)求函數(shù)SKIPIF1<0的零點(diǎn)及單調(diào)區(qū)間;(Ⅱ)求證:曲線SKIPIF1<0存在斜率為SKIPIF1<0的切線,且切點(diǎn)的縱坐標(biāo)SKIPIF1<0.2.(2022·北京·北師大二附中高三階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值和最小值;(3)當(dāng)SKIPIF1<0時(shí),若方程SKIPIF1<0在區(qū)間SKIPIF1<0上有唯一解,求SKIPIF1<0的取值范圍.一、單選題1.(2022·上海市楊浦高級(jí)中學(xué)高三開學(xué)考試)已知點(diǎn)P是曲線SKIPIF1<0上任意一點(diǎn),記直線OP(O為坐標(biāo)系原點(diǎn))的斜率為k,則使得SKIPIF1<0的點(diǎn)P的個(gè)數(shù)為(
).A.0 B.僅有1個(gè) C.僅有2個(gè) D.至少有3個(gè)2.(2022·全國(guó)·高三專題練習(xí))設(shè)SKIPIF1<0,若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有三個(gè)零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·上?!げ軛疃懈叨谀┮阎瘮?shù)SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0,對(duì)于下列結(jié)論:①SKIPIF1<0;②SKIPIF1<0;則(
)A.①②均對(duì) B.①②均錯(cuò) C.①對(duì)②錯(cuò) D.①錯(cuò)②對(duì)4.(2022·山東德州·高三期中)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0,若SKIPIF1<0的圖像與SKIPIF1<0軸有4個(gè)不同的交點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·天津·高三期中)已知定義在R上的函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0恰有2個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<06.(2022·云南·昆明市第三中學(xué)高三階段練習(xí))過點(diǎn)SKIPIF1<0有SKIPIF1<0條直線與函數(shù)SKIPIF1<0的圖象相切,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<07.(2022·湖北·高三階段練習(xí))直線SKIPIF1<0與兩條曲線SKIPIF1<0和SKIPIF1<0共有三個(gè)不同的交點(diǎn),并且從左到右三個(gè)交點(diǎn)的橫坐標(biāo)依次是SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,則下列關(guān)系式正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.(2022·山西·晉城一中教育集團(tuán)南嶺愛物學(xué)校高三階段練習(xí))已知當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的圖像與函數(shù)SKIPIF1<0的圖像有且只有兩個(gè)交點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題9.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0有唯一零點(diǎn),則實(shí)數(shù)SKIPIF1<0的值可以是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.110.(2022·湖南·益陽市箴言中學(xué)高二開學(xué)考試)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有唯一零點(diǎn),則SKIPIF1<0的可能取值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIP
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園班主任辭職報(bào)告范文錦集6篇
- 小學(xué)語文六年級(jí)語文上冊(cè)教案
- 學(xué)生會(huì)宣傳部述職報(bào)告(合集11篇)
- xx省城市更新項(xiàng)目可行性研究報(bào)告
- 小學(xué)學(xué)校校長(zhǎng)辭職報(bào)告合集5篇
- 城中村現(xiàn)狀分析
- 2024年水泵供應(yīng)及銷售協(xié)議范本版B版
- 2024年倉庫主管個(gè)人年度工作總結(jié)模板(五篇)
- 2024年聯(lián)營(yíng)合同范本
- 老舊街區(qū)改造環(huán)境影響評(píng)估
- 中考語文真題專題復(fù)習(xí) 小說閱讀(第01期)(解析版)
- GB 45067-2024特種設(shè)備重大事故隱患判定準(zhǔn)則
- 期末模擬考試卷02-2024-2025學(xué)年上學(xué)期高一思想政治課《中國(guó)特色社會(huì)主義》含答案
- 2024年廣東省高中學(xué)業(yè)水平合格性考試語文試卷真題(含答案解析)
- 生物醫(yī)學(xué)電子學(xué)智慧樹知到期末考試答案章節(jié)答案2024年天津大學(xué)
- 幸福創(chuàng)業(yè)智慧樹知到期末考試答案章節(jié)答案2024年山東大學(xué)
- 2023 版《中國(guó)近現(xiàn)代史綱要》 課后習(xí)題答案
- DB11T 489-2024 建筑基坑支護(hù)技術(shù)規(guī)程
- 云南保山電力股份有限公司招聘筆試題庫
- 個(gè)體診所藥品清單模板
- 三戰(zhàn)課件(輿論戰(zhàn)、法律戰(zhàn)、心理戰(zhàn))
評(píng)論
0/150
提交評(píng)論