西安工業(yè)大學(xué)《大數(shù)據(jù)處理技術(shù)》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁
西安工業(yè)大學(xué)《大數(shù)據(jù)處理技術(shù)》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁
西安工業(yè)大學(xué)《大數(shù)據(jù)處理技術(shù)》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁
西安工業(yè)大學(xué)《大數(shù)據(jù)處理技術(shù)》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁,共1頁西安工業(yè)大學(xué)

《大數(shù)據(jù)處理技術(shù)》2022-2023學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、假設(shè)要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行數(shù)據(jù)降維,以減少數(shù)據(jù)量和計(jì)算復(fù)雜度,以下哪種技術(shù)較為合適?()A.特征選擇B.特征提取C.數(shù)據(jù)壓縮D.數(shù)據(jù)清洗2、在大數(shù)據(jù)時(shí)代,數(shù)據(jù)分析師的角色變得越來越重要。以下關(guān)于數(shù)據(jù)分析師職責(zé)的描述,不準(zhǔn)確的是()A.負(fù)責(zé)設(shè)計(jì)和實(shí)施數(shù)據(jù)分析項(xiàng)目,解決業(yè)務(wù)問題B.僅需要掌握數(shù)據(jù)分析工具和技術(shù),無需了解業(yè)務(wù)背景C.能夠?qū)⒎治鼋Y(jié)果以清晰易懂的方式呈現(xiàn)給決策者D.不斷探索新的數(shù)據(jù)分析方法和技術(shù),提升分析能力3、大數(shù)據(jù)存儲(chǔ)技術(shù)多種多樣,以下關(guān)于常見大數(shù)據(jù)存儲(chǔ)技術(shù)的說法,錯(cuò)誤的是()A.Hadoop的HDFS分布式文件系統(tǒng)具有高容錯(cuò)性和高擴(kuò)展性B.NoSQL數(shù)據(jù)庫適合存儲(chǔ)結(jié)構(gòu)化數(shù)據(jù),并且具備強(qiáng)大的事務(wù)處理能力C.分布式列式數(shù)據(jù)庫能夠高效存儲(chǔ)和查詢大規(guī)模的結(jié)構(gòu)化數(shù)據(jù)D.對(duì)象存儲(chǔ)可以存儲(chǔ)海量的非結(jié)構(gòu)化數(shù)據(jù),如圖片、視頻等4、在構(gòu)建大數(shù)據(jù)系統(tǒng)時(shí),需要考慮數(shù)據(jù)的一致性和可靠性。假設(shè)一個(gè)電商平臺(tái)的大數(shù)據(jù)系統(tǒng),在處理訂單數(shù)據(jù)時(shí),需要確保數(shù)據(jù)在多個(gè)節(jié)點(diǎn)之間的一致性和可靠性,以避免數(shù)據(jù)丟失或錯(cuò)誤。以下哪種技術(shù)或方法最能有效地實(shí)現(xiàn)這一目標(biāo)?()A.數(shù)據(jù)復(fù)制和備份B.分布式事務(wù)處理C.數(shù)據(jù)壓縮和加密D.數(shù)據(jù)緩存和預(yù)取5、假設(shè)要對(duì)大量的文本數(shù)據(jù)進(jìn)行情感分類,并且考慮上下文信息,以下哪種深度學(xué)習(xí)模型可能表現(xiàn)更好?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)B.卷積神經(jīng)網(wǎng)絡(luò)C.長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)D.門控循環(huán)單元6、在大數(shù)據(jù)存儲(chǔ)系統(tǒng)中,副本機(jī)制是保證數(shù)據(jù)可靠性的重要手段。假設(shè)一個(gè)分布式文件系統(tǒng)中有一個(gè)數(shù)據(jù)塊,系統(tǒng)設(shè)置了三個(gè)副本。當(dāng)其中一個(gè)副本所在的節(jié)點(diǎn)出現(xiàn)故障時(shí),以下哪種處理方式是正確的?()A.立即從其他副本中恢復(fù)故障副本B.等待故障節(jié)點(diǎn)修復(fù)后再恢復(fù)副本C.刪除故障副本,不再進(jìn)行恢復(fù)D.降低副本數(shù)量,以節(jié)省存儲(chǔ)空間7、在大數(shù)據(jù)處理中,數(shù)據(jù)挖掘是一個(gè)重要的技術(shù),以下關(guān)于數(shù)據(jù)挖掘的描述中,錯(cuò)誤的是()。A.數(shù)據(jù)挖掘用于從大量數(shù)據(jù)中發(fā)現(xiàn)潛在的模式和知識(shí)B.數(shù)據(jù)挖掘可以使用多種算法,如分類、聚類、關(guān)聯(lián)分析等C.數(shù)據(jù)挖掘只適用于特定的行業(yè)和領(lǐng)域,不能廣泛應(yīng)用D.數(shù)據(jù)挖掘需要結(jié)合具體的業(yè)務(wù)需求和數(shù)據(jù)特點(diǎn)進(jìn)行應(yīng)用8、在大數(shù)據(jù)的應(yīng)用中,醫(yī)療健康領(lǐng)域是一個(gè)重要的方向。假設(shè)要通過分析患者的電子病歷數(shù)據(jù)來發(fā)現(xiàn)疾病的潛在模式和趨勢(shì)。以下哪種數(shù)據(jù)分析方法最適合這個(gè)任務(wù)?()A.生存分析B.因子分析C.主成分分析D.聚類分析9、大數(shù)據(jù)的處理需要考慮硬件資源的優(yōu)化利用。假設(shè)一個(gè)大數(shù)據(jù)處理集群,需要根據(jù)任務(wù)的特點(diǎn)和資源需求來分配計(jì)算和存儲(chǔ)資源。以下哪種資源管理策略最能提高硬件資源的利用率?()A.靜態(tài)資源分配B.動(dòng)態(tài)資源分配C.基于預(yù)測(cè)的資源分配D.隨機(jī)資源分配10、在大數(shù)據(jù)的聚類評(píng)估中,有多種指標(biāo)可以用來衡量聚類結(jié)果的質(zhì)量。假設(shè)我們對(duì)一個(gè)數(shù)據(jù)集進(jìn)行了聚類,以下哪個(gè)指標(biāo)不適合評(píng)估聚類的緊湊性?()A.輪廓系數(shù)B.Calinski-Harabasz指數(shù)C.Davies-Bouldin指數(shù)D.準(zhǔn)確率11、隨著數(shù)據(jù)量的不斷增長(zhǎng),大數(shù)據(jù)技術(shù)在各個(gè)領(lǐng)域得到了廣泛應(yīng)用。以下關(guān)于大數(shù)據(jù)特點(diǎn)的描述,不準(zhǔn)確的是()A.數(shù)據(jù)量巨大,通常以PB甚至EB為單位計(jì)量B.數(shù)據(jù)類型多樣,包括結(jié)構(gòu)化、半結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)C.數(shù)據(jù)價(jià)值密度高,每一條數(shù)據(jù)都具有重要的價(jià)值D.數(shù)據(jù)處理速度要求高,需要在短時(shí)間內(nèi)完成數(shù)據(jù)的分析和處理12、大數(shù)據(jù)分析中的預(yù)測(cè)模型需要不斷評(píng)估和優(yōu)化。假設(shè)我們建立了一個(gè)銷售預(yù)測(cè)模型,以下哪種方法最適合評(píng)估模型的性能?()A.比較預(yù)測(cè)值與實(shí)際值的差異,計(jì)算均方誤差等指標(biāo)B.觀察模型的復(fù)雜程度,越復(fù)雜的模型性能越好C.根據(jù)模型的訓(xùn)練時(shí)間,訓(xùn)練時(shí)間短的模型性能更優(yōu)D.由專家主觀判斷模型的準(zhǔn)確性13、當(dāng)處理大數(shù)據(jù)中的時(shí)空數(shù)據(jù)時(shí),例如氣象數(shù)據(jù)或地理信息數(shù)據(jù),需要特殊的處理方法。假設(shè)要分析一個(gè)地區(qū)多年的氣溫變化趨勢(shì)。以下哪種技術(shù)最適合處理這種時(shí)空數(shù)據(jù)的分析任務(wù)?()A.空間索引B.時(shí)間序列分析C.地理信息系統(tǒng)(GIS)D.以上技術(shù)結(jié)合使用14、在大數(shù)據(jù)環(huán)境中,為了實(shí)現(xiàn)數(shù)據(jù)的實(shí)時(shí)處理和流計(jì)算,以下哪種技術(shù)架構(gòu)通常被采用?()A.FlinkB.SparkStreamingC.KafkaStreamsD.以上都是15、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)隱私保護(hù)的法律法規(guī)不斷完善。以下關(guān)于相關(guān)法律法規(guī)的描述,不準(zhǔn)確的是()A.明確了數(shù)據(jù)主體的權(quán)利和數(shù)據(jù)控制者的義務(wù)B.對(duì)數(shù)據(jù)跨境傳輸進(jìn)行了嚴(yán)格的限制和監(jiān)管C.法律法規(guī)能夠完全杜絕數(shù)據(jù)隱私泄露事件的發(fā)生D.企業(yè)需要遵守法律法規(guī),建立健全的數(shù)據(jù)隱私保護(hù)制度16、在大數(shù)據(jù)存儲(chǔ)中,分布式數(shù)據(jù)庫系統(tǒng)具有很多優(yōu)點(diǎn)。假設(shè)一個(gè)應(yīng)用需要處理高并發(fā)的讀寫請(qǐng)求,并且數(shù)據(jù)量巨大。以下哪種分布式數(shù)據(jù)庫系統(tǒng)可能是合適的選擇?()A.MySQLClusterB.TiDBC.CockroachDBD.Alloftheabove(以上皆是)17、對(duì)于一個(gè)大型電商平臺(tái),要根據(jù)用戶的瀏覽和購(gòu)買歷史進(jìn)行個(gè)性化推薦,以下哪種技術(shù)是關(guān)鍵?()A.數(shù)據(jù)可視化B.自然語言處理C.推薦系統(tǒng)D.數(shù)據(jù)清洗18、在大數(shù)據(jù)應(yīng)用中,情感分析常用于處理文本數(shù)據(jù)。以下關(guān)于情感分析方法的描述,哪一項(xiàng)是不正確的?()A.基于詞典的方法依賴于預(yù)先構(gòu)建的情感詞典B.機(jī)器學(xué)習(xí)方法需要大量標(biāo)注數(shù)據(jù)進(jìn)行訓(xùn)練C.深度學(xué)習(xí)方法在處理復(fù)雜文本時(shí)表現(xiàn)出色D.基于規(guī)則的方法靈活性最高,適應(yīng)性最強(qiáng)19、在大數(shù)據(jù)的存儲(chǔ)中,為了提高數(shù)據(jù)的可靠性和可用性,常常采用冗余存儲(chǔ)的方式。假設(shè)一個(gè)關(guān)鍵的大數(shù)據(jù)集需要確保在硬件故障時(shí)數(shù)據(jù)不丟失。以下哪種冗余存儲(chǔ)策略最適合這種需求?()A.鏡像存儲(chǔ)B.奇偶校驗(yàn)存儲(chǔ)C.糾錯(cuò)編碼存儲(chǔ)D.以上策略結(jié)合使用20、大數(shù)據(jù)分析中的數(shù)據(jù)預(yù)處理步驟包括數(shù)據(jù)清洗、轉(zhuǎn)換和集成等。假設(shè)我們有多個(gè)來源的異構(gòu)數(shù)據(jù)需要整合分析。以下關(guān)于數(shù)據(jù)預(yù)處理的說法,正確的是:()A.數(shù)據(jù)清洗主要是刪除重復(fù)和錯(cuò)誤的數(shù)據(jù),對(duì)缺失值可以忽略B.數(shù)據(jù)轉(zhuǎn)換包括將數(shù)據(jù)從一種格式轉(zhuǎn)換為另一種格式,以方便后續(xù)處理C.數(shù)據(jù)集成時(shí),不同數(shù)據(jù)源的數(shù)據(jù)結(jié)構(gòu)必須完全一致才能進(jìn)行整合D.數(shù)據(jù)預(yù)處理對(duì)最終的分析結(jié)果影響不大,可以簡(jiǎn)單處理21、在大數(shù)據(jù)處理中,為了提高數(shù)據(jù)處理的并行度和效率,以下哪種數(shù)據(jù)分區(qū)策略通常被采用?()A.哈希分區(qū)B.范圍分區(qū)C.列表分區(qū)D.隨機(jī)分區(qū)22、大數(shù)據(jù)治理是確保大數(shù)據(jù)有效利用和管理的重要環(huán)節(jié)。關(guān)于大數(shù)據(jù)治理的框架和流程,以下描述不正確的是:()A.大數(shù)據(jù)治理包括制定策略、建立組織架構(gòu)、明確數(shù)據(jù)標(biāo)準(zhǔn)和流程等方面B.數(shù)據(jù)治理流程通常涵蓋數(shù)據(jù)的規(guī)劃、獲取、存儲(chǔ)、使用和銷毀等階段C.大數(shù)據(jù)治理只需關(guān)注技術(shù)層面,無需考慮組織文化和人員因素D.建立數(shù)據(jù)質(zhì)量評(píng)估機(jī)制和數(shù)據(jù)治理的監(jiān)督機(jī)制是大數(shù)據(jù)治理的重要組成部分23、在大數(shù)據(jù)的異常檢測(cè)中,基于密度的方法能夠發(fā)現(xiàn)不同形狀和大小的異常點(diǎn)。假設(shè)我們有一個(gè)二維的數(shù)據(jù)空間,以下哪種基于密度的異常檢測(cè)算法比較常用?()A.LOF(LocalOutlierFactor)算法B.KNN(K-NearestNeighbors)算法C.IsolationForest算法D.One-ClassSVM算法24、在大數(shù)據(jù)可視化中,為了展示數(shù)據(jù)的相關(guān)性和關(guān)系,以下哪種圖表類型通常被使用?()A.相關(guān)矩陣圖B.和弦圖C.?;鶊DD.以上都是25、大數(shù)據(jù)在氣象領(lǐng)域有重要的應(yīng)用。以下關(guān)于大數(shù)據(jù)在氣象中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以通過分析大量的氣象數(shù)據(jù)提高天氣預(yù)報(bào)的準(zhǔn)確性B.有助于研究氣候變化的趨勢(shì)和影響C.大數(shù)據(jù)在氣象領(lǐng)域的應(yīng)用已經(jīng)非常成熟,沒有進(jìn)一步發(fā)展的空間D.能夠?yàn)闉?zāi)害性天氣的預(yù)警和應(yīng)對(duì)提供支持26、在大數(shù)據(jù)分析中,數(shù)據(jù)清洗是一個(gè)關(guān)鍵步驟。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄。以下哪種方法在處理缺失值時(shí)最為常用且有效?()A.直接刪除包含缺失值的記錄B.用平均值或中位數(shù)填充缺失值C.根據(jù)其他相關(guān)字段的值來推測(cè)缺失值D.對(duì)缺失值不做任何處理,直接進(jìn)行分析27、在大數(shù)據(jù)處理中,流處理和批處理是兩種常見的方式。當(dāng)需要實(shí)時(shí)處理不斷生成的數(shù)據(jù)流,例如實(shí)時(shí)監(jiān)控系統(tǒng)中的數(shù)據(jù),應(yīng)該選擇哪種處理方式?()A.流處理B.批處理C.先進(jìn)行批處理,再進(jìn)行流處理D.以上都不對(duì)28、在進(jìn)行大數(shù)據(jù)分析項(xiàng)目時(shí),需要對(duì)數(shù)據(jù)進(jìn)行預(yù)處理。如果數(shù)據(jù)集中存在異常值,以下哪種處理方法可能不太恰當(dāng)?()A.識(shí)別并刪除異常值B.對(duì)異常值進(jìn)行修正C.將異常值視為缺失值進(jìn)行處理D.忽略異常值,不進(jìn)行任何處理29、假設(shè)要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行分類,并且數(shù)據(jù)具有多個(gè)類別,以下哪種機(jī)器學(xué)習(xí)算法可能更適合?()A.樸素貝葉斯B.K近鄰C.多層感知機(jī)D.支持向量機(jī)30、大數(shù)據(jù)存儲(chǔ)技術(shù)的發(fā)展趨勢(shì)包括分布式存儲(chǔ)、云存儲(chǔ)、對(duì)象存儲(chǔ)等,以下關(guān)于大數(shù)據(jù)存儲(chǔ)技術(shù)發(fā)展趨勢(shì)的描述中,錯(cuò)誤的是()。A.分布式存儲(chǔ)可以提高數(shù)據(jù)的存儲(chǔ)容量和可靠性B.云存儲(chǔ)可以提供靈活的存儲(chǔ)服務(wù)和高可用性C.對(duì)象存儲(chǔ)適用于存儲(chǔ)大規(guī)模非結(jié)構(gòu)化數(shù)據(jù)D.大數(shù)據(jù)存儲(chǔ)技術(shù)的發(fā)展趨勢(shì)只需要考慮存儲(chǔ)容量,不需要考慮存儲(chǔ)性能和成本二、編程題(本大題共5個(gè)小題,共25分)1、(本題5分)利用Spark框架,讀取一個(gè)包含電商銷售數(shù)據(jù)的文件,分析不同商品類別在不同地區(qū)的銷售情況,繪制相應(yīng)的可視化圖表。2、(本題5分)運(yùn)用Java結(jié)合Redis緩存數(shù)據(jù)庫,開發(fā)一個(gè)程序來緩存電商網(wǎng)站的商品分類信息和商品詳情頁,以提高頁面加載速度,同時(shí)要處理緩存的更新和失效。3、(本題5分)利用Spark框架,讀取一個(gè)包含在線考試學(xué)生答題數(shù)據(jù)的文件,分析學(xué)生的知識(shí)掌握情況和答題策略。4、(本題5分)用Python編寫一個(gè)程序,使用Hive對(duì)存儲(chǔ)在Hadoop中的城市交通流量數(shù)據(jù)進(jìn)行分析,找出交通擁堵最嚴(yán)重的時(shí)間段和路段。5、(本題5分)使用Python的Spark框架,對(duì)一個(gè)包含金融市場(chǎng)交易數(shù)據(jù)的大型數(shù)據(jù)集進(jìn)行分析。找出波動(dòng)幅度最大的5種金融產(chǎn)品,并計(jì)算它們的平均波動(dòng)幅度。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論