湖北省孝感市安陸市第一中學(xué)2025屆高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷含解析_第1頁
湖北省孝感市安陸市第一中學(xué)2025屆高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷含解析_第2頁
湖北省孝感市安陸市第一中學(xué)2025屆高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷含解析_第3頁
湖北省孝感市安陸市第一中學(xué)2025屆高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷含解析_第4頁
湖北省孝感市安陸市第一中學(xué)2025屆高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北省孝感市安陸市第一中學(xué)2025屆高三第一次調(diào)研測(cè)試數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,則實(shí)數(shù)的大小關(guān)系為()A. B. C. D.2.在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.拋物線的焦點(diǎn)為F,點(diǎn)為該拋物線上的動(dòng)點(diǎn),若點(diǎn),則的最小值為()A. B. C. D.4.已知全集,集合,則=()A. B.C. D.5.點(diǎn)在所在的平面內(nèi),,,,,且,則()A. B. C. D.6.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是()A.36cm3 B.48cm3 C.60cm3 D.72cm37.若集合,,則下列結(jié)論正確的是()A. B. C. D.8.已知滿足,,,則在上的投影為()A. B. C. D.29.已知數(shù)列是公比為的等比數(shù)列,且,,成等差數(shù)列,則公比的值為(

)A. B. C.或 D.或10.已知點(diǎn)在雙曲線上,則該雙曲線的離心率為()A. B. C. D.11.函數(shù)f(x)=lnA. B. C. D.12.已知雙曲線的左、右頂點(diǎn)分別為,點(diǎn)是雙曲線上與不重合的動(dòng)點(diǎn),若,則雙曲線的離心率為()A. B. C.4 D.2二、填空題:本題共4小題,每小題5分,共20分。13.滿足約束條件的目標(biāo)函數(shù)的最小值是.14.中,角的對(duì)邊分別為,且成等差數(shù)列,若,,則的面積為__________.15.設(shè)為定義在上的偶函數(shù),當(dāng)時(shí),(為常數(shù)),若,則實(shí)數(shù)的值為______.16.如圖,在中,,,,點(diǎn)在邊上,且,將射線繞著逆時(shí)針方向旋轉(zhuǎn),并在所得射線上取一點(diǎn),使得,連接,則的面積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)的最小正周期以及單調(diào)遞增區(qū)間;(2)已知,若,,,求的面積.18.(12分)已知橢圓,直線不過原點(diǎn)且不平行于坐標(biāo)軸,與有兩個(gè)交點(diǎn),,線段的中點(diǎn)為.(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;(Ⅱ)若過點(diǎn),延長(zhǎng)線段與交于點(diǎn),四邊形能否為平行四邊形?若能,求此時(shí)的斜率,若不能,說明理由.19.(12分)在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(φ為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2是圓心為(2,),半徑為1的圓.(1)求曲線C1的普通方程和C2的直角坐標(biāo)方程;(2)設(shè)M為曲線C1上的點(diǎn),N為曲線C2上的點(diǎn),求|MN|的取值范圍.20.(12分)曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線,的交點(diǎn)分別為、(、異于原點(diǎn)),當(dāng)斜率時(shí),求的最小值.21.(12分)在中,內(nèi)角所對(duì)的邊分別為,已知,且.(I)求角的大小;(Ⅱ)若,求面積的取值范圍.22.(10分)如圖,已知正方形所在平面與梯形所在平面垂直,BM∥AN,,,.(1)證明:平面;(2)求點(diǎn)N到平面CDM的距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

將化成以為底的對(duì)數(shù),即可判斷的大小關(guān)系;由對(duì)數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),可判斷出與1的大小關(guān)系,從而可判斷三者的大小關(guān)系.【詳解】依題意,由對(duì)數(shù)函數(shù)的性質(zhì)可得.又因?yàn)?,?故選:A.【點(diǎn)睛】本題考查了指數(shù)函數(shù)的性質(zhì),考查了對(duì)數(shù)函數(shù)的性質(zhì),考查了對(duì)數(shù)的運(yùn)算性質(zhì).兩個(gè)對(duì)數(shù)型的數(shù)字比較大小時(shí),底數(shù)相同,則構(gòu)造對(duì)數(shù)函數(shù),結(jié)合對(duì)數(shù)的單調(diào)性可判斷大??;若真數(shù)相同,則結(jié)合對(duì)數(shù)函數(shù)的圖像或者換底公式可判斷大?。蝗粽鏀?shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.2、C【解析】

化簡(jiǎn)復(fù)數(shù)為、的形式,可以確定對(duì)應(yīng)的點(diǎn)位于的象限.【詳解】解:復(fù)數(shù)故復(fù)數(shù)對(duì)應(yīng)的坐標(biāo)為位于第三象限故選:.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的運(yùn)算,復(fù)數(shù)和復(fù)平面內(nèi)點(diǎn)的對(duì)應(yīng)關(guān)系,屬于基礎(chǔ)題.3、B【解析】

通過拋物線的定義,轉(zhuǎn)化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準(zhǔn)線方程為,,過作垂直直線于,由拋物線的定義可知,連結(jié),當(dāng)是拋物線的切線時(shí),有最小值,則最大,即最大,就是直線的斜率最大,設(shè)在的方程為:,所以,解得:,所以,解得,所以,.故選:.【點(diǎn)睛】本題考查拋物線的基本性質(zhì),直線與拋物線的位置關(guān)系,轉(zhuǎn)化思想的應(yīng)用,屬于基礎(chǔ)題.4、D【解析】

先計(jì)算集合,再計(jì)算,最后計(jì)算.【詳解】解:,,.故選:.【點(diǎn)睛】本題主要考查了集合的交,補(bǔ)混合運(yùn)算,注意分清集合間的關(guān)系,屬于基礎(chǔ)題.5、D【解析】

確定點(diǎn)為外心,代入化簡(jiǎn)得到,,再根據(jù)計(jì)算得到答案.【詳解】由可知,點(diǎn)為外心,則,,又,所以①因?yàn)椋诼?lián)立方程①②可得,,,因?yàn)?,所以,即.故選:【點(diǎn)睛】本題考查了向量模長(zhǎng)的計(jì)算,意在考查學(xué)生的計(jì)算能力.6、B【解析】試題分析:該幾何體上面是長(zhǎng)方體,下面是四棱柱;長(zhǎng)方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點(diǎn):三視圖和幾何體的體積.7、D【解析】

由題意,分析即得解【詳解】由題意,故,故選:D【點(diǎn)睛】本題考查了元素和集合,集合和集合之間的關(guān)系,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.8、A【解析】

根據(jù)向量投影的定義,即可求解.【詳解】在上的投影為.故選:A【點(diǎn)睛】本題考查向量的投影,屬于基礎(chǔ)題.9、D【解析】

由成等差數(shù)列得,利用等比數(shù)列的通項(xiàng)公式展開即可得到公比q的方程.【詳解】由題意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故選:D.【點(diǎn)睛】本題考查等差等比數(shù)列的綜合,利用等差數(shù)列的性質(zhì)建立方程求q是解題的關(guān)鍵,對(duì)于等比數(shù)列的通項(xiàng)公式也要熟練.10、C【解析】

將點(diǎn)A坐標(biāo)代入雙曲線方程即可求出雙曲線的實(shí)軸長(zhǎng)和虛軸長(zhǎng),進(jìn)而求得離心率.【詳解】將,代入方程得,而雙曲線的半實(shí)軸,所以,得離心率,故選C.【點(diǎn)睛】此題考查雙曲線的標(biāo)準(zhǔn)方程和離心率的概念,屬于基礎(chǔ)題.11、C【解析】因?yàn)閒x=lnx2-4x+4x-23=12、D【解析】

設(shè),,,根據(jù)可得①,再根據(jù)又②,由①②可得,化簡(jiǎn)可得,即可求出離心率.【詳解】解:設(shè),,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.【點(diǎn)睛】本題考查雙曲線的方程和性質(zhì),考查了斜率的計(jì)算,離心率的求法,屬于基礎(chǔ)題和易錯(cuò)題.二、填空題:本題共4小題,每小題5分,共20分。13、-2【解析】

可行域是如圖的菱形ABCD,代入計(jì)算,知為最小.14、.【解析】

由A,B,C成等差數(shù)列得出B=60°,利用正弦定理得進(jìn)而得代入三角形的面積公式即可得出.【詳解】∵A,B,C成等差數(shù)列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案為:【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),三角形的面積公式,考查正弦定理的應(yīng)用,屬于基礎(chǔ)題.15、1【解析】

根據(jù)為定義在上的偶函數(shù),得,再根據(jù)當(dāng)時(shí),(為常數(shù))求解.【詳解】因?yàn)闉槎x在上的偶函數(shù),所以,又因?yàn)楫?dāng)時(shí),,所以,所以實(shí)數(shù)的值為1.故答案為:1【點(diǎn)睛】本題主要考查函數(shù)奇偶性的應(yīng)用,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.16、【解析】

由余弦定理求得,再結(jié)合正弦定理得,進(jìn)而得,得,則面積可求【詳解】由,得,解得.因?yàn)椋?,,所?又因?yàn)椋?因?yàn)?,所?故答案為【點(diǎn)睛】本題考查正弦定理、余弦定理的應(yīng)用,考查運(yùn)算求解能力,是中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)最小正周期為,單調(diào)遞增區(qū)間為;(2).【解析】

(1)利用三角恒等變換思想化簡(jiǎn)函數(shù)的解析式為,利用正弦型函數(shù)的周期公式可求得函數(shù)的最小正周期,解不等式可求得該函數(shù)的單調(diào)遞增區(qū)間;(2)由求得,由得出或,分兩種情況討論,結(jié)合余弦定理解三角形,進(jìn)行利用三角形的面積公式可求得的面積.【詳解】(1),所以,函數(shù)的最小正周期為,由得,因此,函數(shù)的單調(diào)遞增區(qū)間為;(2)由,得,或,或,,,又,,即.①當(dāng)時(shí),即,則由,,得,則,此時(shí),的面積為;②當(dāng)時(shí),則,即,則由,解得,,.綜上,的面積為.【點(diǎn)睛】本題考查正弦型函數(shù)的周期和單調(diào)區(qū)間的求解,同時(shí)也考查了三角形面積的計(jì)算,涉及余弦定理解三角形的應(yīng)用,考查計(jì)算能力,屬于中等題.18、(Ⅰ)詳見解析;(Ⅱ)能,或.【解析】試題分析:(1)設(shè)直線,直線方程與橢圓方程聯(lián)立,根據(jù)韋達(dá)定理求根與系數(shù)的關(guān)系,并表示直線的斜率,再表示;(2)第一步由(Ⅰ)得的方程為.設(shè)點(diǎn)的橫坐標(biāo)為,直線與橢圓方程聯(lián)立求點(diǎn)的坐標(biāo),第二步再整理點(diǎn)的坐標(biāo),如果能構(gòu)成平行四邊形,只需,如果有值,并且滿足,的條件就說明存在,否則不存在.試題解析:解:(1)設(shè)直線,,,.∴由得,∴,.∴直線的斜率,即.即直線的斜率與的斜率的乘積為定值.(2)四邊形能為平行四邊形.∵直線過點(diǎn),∴不過原點(diǎn)且與有兩個(gè)交點(diǎn)的充要條件是,由(Ⅰ)得的方程為.設(shè)點(diǎn)的橫坐標(biāo)為.∴由得,即將點(diǎn)的坐標(biāo)代入直線的方程得,因此.四邊形為平行四邊形當(dāng)且僅當(dāng)線段與線段互相平分,即∴.解得,.∵,,,∴當(dāng)?shù)男甭蕿榛驎r(shí),四邊形為平行四邊形.考點(diǎn):直線與橢圓的位置關(guān)系的綜合應(yīng)用【一題多解】第一問涉及中點(diǎn)弦,當(dāng)直線與圓錐曲線相交時(shí),點(diǎn)是弦的中點(diǎn),(1)知道中點(diǎn)坐標(biāo),求直線的斜率,或知道直線斜率求中點(diǎn)坐標(biāo)的關(guān)系,或知道求直線斜率與直線斜率的關(guān)系時(shí),也可以選擇點(diǎn)差法,設(shè),,代入橢圓方程,兩式相減,化簡(jiǎn)為,兩邊同時(shí)除以得,而,,即得到結(jié)果,(2)對(duì)于用坐標(biāo)法來解決幾何性質(zhì)問題,那么就要求首先看出幾何關(guān)系滿足什么條件,其次用坐標(biāo)表示這些幾何關(guān)系,本題的關(guān)鍵就是如果是平行四邊形那么對(duì)角線互相平分,即,分別用方程聯(lián)立求兩個(gè)坐標(biāo),最后求斜率.19、(1)C1:y2=1,C2:x2+(y﹣2)2=1;(2)[0,1]【解析】

(Ⅰ)消去參數(shù)φ可得C1的直角坐標(biāo)方程,易得曲線C2的圓心的直角坐標(biāo)為(0,2),可得C2的直角坐標(biāo)方程;(Ⅱ)設(shè)M(3cosφ,sinφ),由三角函數(shù)和二次函數(shù)可得|MC2|的取值范圍,結(jié)合圓的知識(shí)可得答案.【詳解】(1)消去參數(shù)φ可得C1的普通方程為y2=1,∵曲線C2是圓心為(2,),半徑為1的圓,曲線C2的圓心的直角坐標(biāo)為(0,2),∴C2的直角坐標(biāo)方程為x2+(y﹣2)2=1;(2)設(shè)M(3cosφ,sinφ),則|MC2|,∵﹣1≤sinφ≤1,∴1≤|MC2|,由題意結(jié)合圖象可得|MN|的最小值為1﹣1=0,最大值為1,∴|MN|的取值范圍為[0,1].【點(diǎn)睛】本題考查橢圓的參數(shù)方程,涉及圓的知識(shí)和極坐標(biāo)方程,屬中檔題.20、(1)的極坐標(biāo)方程為;曲線的直角坐標(biāo)方程.(2)【解析】

(1)消去參數(shù),可得曲線的直角坐標(biāo)方程,再利用極坐標(biāo)與直角坐標(biāo)的互化,即可求解.(2)解法1:設(shè)直線的傾斜角為,把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程,求得,再把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程,得,得出,利用基本不等式,即可求解;解法2:設(shè)直線的極坐標(biāo)方程為,分別代入曲線,的極坐標(biāo)方程,得,,得出,即可基本不等式,即可求解.【詳解】(1)由題曲線的參數(shù)方程為(為參數(shù)),消去參數(shù),可得曲線的直角坐標(biāo)方程為,即,則曲線的極坐標(biāo)方程為,即,又因?yàn)榍€的極坐標(biāo)方程為,即,根據(jù),代入即可求解曲線的直角坐標(biāo)方程.(2)解法1:設(shè)直線的傾斜角為,則直線的參數(shù)方程為(為參數(shù),),把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程得:,解得,,,把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程得:,解得,,,,,即,,,,當(dāng)且僅當(dāng),即時(shí)取等號(hào),故的最小值為.解法2:設(shè)直線的極坐標(biāo)方程為),代入曲線的極坐標(biāo)方程,得,,把直線的參數(shù)方程代入曲線的極坐標(biāo)方程得:,,即,,曲線的參,即,,,,當(dāng)且僅當(dāng),即時(shí)取等號(hào),故的最小值為.【點(diǎn)睛】本題主要考查了參數(shù)方程與普通方程,以及極坐標(biāo)方程與直角坐標(biāo)方程點(diǎn)互化,以及直線參數(shù)方程的應(yīng)用和極坐標(biāo)方程的應(yīng)用,其中解答中熟記互化公式,合理應(yīng)用直線的參數(shù)方程中參數(shù)的幾何意義是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.21、(Ⅰ);(Ⅱ)【解析】

(I)根據(jù),利用二倍角公式得到,再由輔助角公式得到,然后根據(jù)正弦函數(shù)的性質(zhì)求解.(Ⅱ)根據(jù)(I)由余弦定理得到,再利用重要不等式得到,然后由求解.【詳解】(I)因?yàn)椋?,,,或,或,因?yàn)?,所以所以;(Ⅱ)由余弦定理得:,所以,所以,?dāng)且僅當(dāng)取等號(hào),又因?yàn)?,所以,所以【點(diǎn)睛】本題主要考查二倍角公式,輔助角公式以及余弦定理,還考查了運(yùn)算求解的能力,屬于中檔題.22、(1)證明見解析(2)【解析】

(1)因?yàn)檎叫蜛BCD所在平面與梯形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論