浙大城市學(xué)院《深度學(xué)習(xí)理論與實(shí)踐》2021-2022學(xué)年第一學(xué)期期末試卷_第1頁
浙大城市學(xué)院《深度學(xué)習(xí)理論與實(shí)踐》2021-2022學(xué)年第一學(xué)期期末試卷_第2頁
浙大城市學(xué)院《深度學(xué)習(xí)理論與實(shí)踐》2021-2022學(xué)年第一學(xué)期期末試卷_第3頁
浙大城市學(xué)院《深度學(xué)習(xí)理論與實(shí)踐》2021-2022學(xué)年第一學(xué)期期末試卷_第4頁
浙大城市學(xué)院《深度學(xué)習(xí)理論與實(shí)踐》2021-2022學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁浙大城市學(xué)院《深度學(xué)習(xí)理論與實(shí)踐》

2021-2022學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在一個(gè)強(qiáng)化學(xué)習(xí)場景中,智能體在探索新的策略和利用已有的經(jīng)驗(yàn)之間需要進(jìn)行平衡。如果智能體過于傾向于探索,可能會導(dǎo)致效率低下;如果過于傾向于利用已有經(jīng)驗(yàn),可能會錯(cuò)過更好的策略。以下哪種方法可以有效地控制這種平衡?()A.調(diào)整學(xué)習(xí)率B.調(diào)整折扣因子C.使用ε-貪婪策略,控制探索的概率D.增加訓(xùn)練的輪數(shù)2、在進(jìn)行特征選擇時(shí),有多種方法可以評估特征的重要性。假設(shè)我們有一個(gè)包含多個(gè)特征的數(shù)據(jù)集。以下關(guān)于特征重要性評估方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.信息增益通過計(jì)算特征引入前后信息熵的變化來衡量特征的重要性B.卡方檢驗(yàn)可以檢驗(yàn)特征與目標(biāo)變量之間的獨(dú)立性,從而評估特征的重要性C.隨機(jī)森林中的特征重要性評估是基于特征對模型性能的貢獻(xiàn)程度D.所有的特征重要性評估方法得到的結(jié)果都是完全準(zhǔn)確和可靠的,不需要進(jìn)一步驗(yàn)證3、在構(gòu)建機(jī)器學(xué)習(xí)模型時(shí),選擇合適的正則化方法可以防止過擬合。假設(shè)我們正在訓(xùn)練一個(gè)邏輯回歸模型。以下關(guān)于正則化的描述,哪一項(xiàng)是錯(cuò)誤的?()A.L1正則化會使部分模型參數(shù)變?yōu)?,從而實(shí)現(xiàn)特征選擇B.L2正則化通過對模型參數(shù)的平方和進(jìn)行懲罰,使參數(shù)值變小C.正則化參數(shù)越大,對模型的約束越強(qiáng),可能導(dǎo)致模型欠擬合D.同時(shí)使用L1和L2正則化(ElasticNet)總是比單獨(dú)使用L1或L2正則化效果好4、在深度學(xué)習(xí)中,批量歸一化(BatchNormalization)的主要作用是()A.加速訓(xùn)練B.防止過擬合C.提高模型泛化能力D.以上都是5、在進(jìn)行模型融合時(shí),以下關(guān)于模型融合的方法和作用,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過平均多個(gè)模型的預(yù)測結(jié)果來進(jìn)行融合,降低模型的方差B.堆疊(Stacking)是一種將多個(gè)模型的預(yù)測結(jié)果作為輸入,訓(xùn)練一個(gè)新的模型進(jìn)行融合的方法C.模型融合可以結(jié)合不同模型的優(yōu)點(diǎn),提高整體的預(yù)測性能D.模型融合總是能顯著提高模型的性能,無論各個(gè)模型的性能如何6、某研究需要對一個(gè)大型數(shù)據(jù)集進(jìn)行降維,同時(shí)希望保留數(shù)據(jù)的主要特征。以下哪種降維方法在這種情況下可能較為合適?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-分布隨機(jī)鄰域嵌入(t-SNE)D.自編碼器7、假設(shè)正在開發(fā)一個(gè)自動駕駛系統(tǒng),其中一個(gè)關(guān)鍵任務(wù)是目標(biāo)檢測,例如識別道路上的行人、車輛和障礙物。在選擇目標(biāo)檢測算法時(shí),需要考慮算法的準(zhǔn)確性、實(shí)時(shí)性和對不同環(huán)境的適應(yīng)性。以下哪種目標(biāo)檢測算法在實(shí)時(shí)性要求較高的場景中可能表現(xiàn)較好?()A.FasterR-CNN,具有較高的檢測精度B.YOLO(YouOnlyLookOnce),能夠?qū)崿F(xiàn)快速檢測C.SSD(SingleShotMultiBoxDetector),在精度和速度之間取得平衡D.以上算法都不適合實(shí)時(shí)應(yīng)用8、在一個(gè)圖像識別任務(wù)中,數(shù)據(jù)存在類別不平衡的問題,即某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別。以下哪種處理方法可能是有效的?()A.過采樣少數(shù)類樣本,增加其數(shù)量,但可能導(dǎo)致過擬合B.欠采樣多數(shù)類樣本,減少其數(shù)量,但可能丟失重要信息C.生成合成樣本,如使用SMOTE算法,但合成樣本的質(zhì)量難以保證D.以上方法結(jié)合使用,并結(jié)合模型調(diào)整進(jìn)行優(yōu)化9、在強(qiáng)化學(xué)習(xí)中,智能體通過與環(huán)境進(jìn)行交互來學(xué)習(xí)最優(yōu)策略。假設(shè)一個(gè)機(jī)器人需要在復(fù)雜的環(huán)境中找到通往目標(biāo)的最佳路徑,并且在途中會遇到各種障礙和獎(jiǎng)勵(lì)。在這種情況下,以下哪種強(qiáng)化學(xué)習(xí)算法可能更適合解決這個(gè)問題?()A.Q-learning算法,通過估計(jì)狀態(tài)-動作值函數(shù)來選擇動作B.SARSA算法,基于當(dāng)前策略進(jìn)行策略評估和改進(jìn)C.策略梯度算法,直接優(yōu)化策略的參數(shù)D.以上算法都不適合,需要使用專門的路徑規(guī)劃算法10、在一個(gè)圖像生成的任務(wù)中,需要根據(jù)給定的描述或條件生成逼真的圖像??紤]到生成圖像的質(zhì)量、多樣性和創(chuàng)新性。以下哪種生成模型可能是最有潛力的?()A.生成對抗網(wǎng)絡(luò)(GAN),通過對抗訓(xùn)練生成逼真的圖像,但可能存在模式崩潰和訓(xùn)練不穩(wěn)定的問題B.變分自編碼器(VAE),能夠?qū)W習(xí)數(shù)據(jù)的潛在分布并生成新樣本,但生成的圖像可能較模糊C.自回歸模型,如PixelCNN,逐像素生成圖像,保證了局部一致性,但生成速度較慢D.擴(kuò)散模型,通過逐步去噪生成圖像,具有較高的質(zhì)量和多樣性,但計(jì)算成本較高11、過擬合是機(jī)器學(xué)習(xí)中常見的問題之一。以下關(guān)于過擬合的說法中,錯(cuò)誤的是:過擬合是指模型在訓(xùn)練數(shù)據(jù)上表現(xiàn)很好,但在測試數(shù)據(jù)上表現(xiàn)不佳。過擬合的原因可能是模型過于復(fù)雜或者訓(xùn)練數(shù)據(jù)不足。那么,下列關(guān)于過擬合的說法錯(cuò)誤的是()A.增加訓(xùn)練數(shù)據(jù)可以緩解過擬合問題B.正則化是一種常用的防止過擬合的方法C.過擬合只在深度學(xué)習(xí)中出現(xiàn),傳統(tǒng)的機(jī)器學(xué)習(xí)算法不會出現(xiàn)過擬合問題D.可以通過交叉驗(yàn)證等方法來檢測過擬合12、在一個(gè)分類問題中,如果數(shù)據(jù)集中存在噪聲和錯(cuò)誤標(biāo)簽,以下哪種模型可能對這類噪聲具有一定的魯棒性?()A.集成學(xué)習(xí)模型B.深度學(xué)習(xí)模型C.支持向量機(jī)D.決策樹13、在機(jī)器學(xué)習(xí)中,特征工程是非常重要的一步。假設(shè)我們要預(yù)測一個(gè)城市的空氣質(zhì)量,有許多相關(guān)的原始數(shù)據(jù),如氣象數(shù)據(jù)、交通流量、工廠排放等。以下關(guān)于特征工程的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.對原始數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,可以使不同特征在數(shù)值上具有可比性B.從原始數(shù)據(jù)中提取新的特征,例如計(jì)算交通流量的日變化率,有助于提高模型的性能C.特征選擇是選擇對目標(biāo)變量有顯著影響的特征,去除冗余或無關(guān)的特征D.特征工程只需要在模型訓(xùn)練之前進(jìn)行一次,后續(xù)不需要再進(jìn)行調(diào)整和優(yōu)化14、在一個(gè)異常檢測問題中,例如檢測網(wǎng)絡(luò)中的異常流量,數(shù)據(jù)通常呈現(xiàn)出正常樣本遠(yuǎn)遠(yuǎn)多于異常樣本的情況。如果使用傳統(tǒng)的監(jiān)督學(xué)習(xí)算法,可能會因?yàn)閿?shù)據(jù)不平衡而導(dǎo)致模型對異常樣本的檢測能力不足。以下哪種方法更適合解決這類異常檢測問題?()A.構(gòu)建一個(gè)二分類模型,將數(shù)據(jù)分為正常和異常兩類B.使用無監(jiān)督學(xué)習(xí)算法,如基于密度的聚類算法,識別異常點(diǎn)C.對數(shù)據(jù)進(jìn)行平衡處理,如復(fù)制異常樣本,使正常和異常樣本數(shù)量相等D.以上方法都不適合,異常檢測問題無法通過機(jī)器學(xué)習(xí)解決15、假設(shè)正在進(jìn)行一個(gè)異常檢測任務(wù),數(shù)據(jù)具有高維度和復(fù)雜的分布。以下哪種技術(shù)可以用于將高維數(shù)據(jù)映射到低維空間以便更好地檢測異常?()A.核主成分分析(KPCA)B.局部線性嵌入(LLE)C.拉普拉斯特征映射D.以上技術(shù)都可以二、簡答題(本大題共3個(gè)小題,共15分)1、(本題5分)解釋如何使用機(jī)器學(xué)習(xí)進(jìn)行冰川變化監(jiān)測。2、(本題5分)什么是終身學(xué)習(xí)?它的關(guān)鍵技術(shù)有哪些?3、(本題5分)什么是集成學(xué)習(xí)?舉例說明常見的集成學(xué)習(xí)方法。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)論述機(jī)器學(xué)習(xí)在社交媒體分析中的應(yīng)用。討論用戶行為分析、情感分析、社交網(wǎng)絡(luò)分析等方面的機(jī)器學(xué)習(xí)方法和應(yīng)用效果。2、(本題5分)探討機(jī)器學(xué)習(xí)在圖書館管理中的應(yīng)用,如圖書推薦、讀者行為分析等,分析其對圖書館服務(wù)的提升。3、(本題5分)論述在機(jī)器學(xué)習(xí)模型壓縮中,剪枝和量化的方法和效果。研究如何在保持性能的前提下減少模型參數(shù)和計(jì)算量。4、(本題5分)結(jié)合實(shí)際案例,論述機(jī)器學(xué)習(xí)在氣象預(yù)報(bào)中的應(yīng)用。探討天氣預(yù)報(bào)、災(zāi)害預(yù)警、氣候分析等方面的機(jī)器學(xué)習(xí)技術(shù)和應(yīng)用前景。5、(本題5分)探討機(jī)器學(xué)習(xí)中的半監(jiān)督學(xué)習(xí)算

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論