2025屆貴州遵義航天高中高三(最后沖刺)數(shù)學(xué)試卷含解析_第1頁
2025屆貴州遵義航天高中高三(最后沖刺)數(shù)學(xué)試卷含解析_第2頁
2025屆貴州遵義航天高中高三(最后沖刺)數(shù)學(xué)試卷含解析_第3頁
2025屆貴州遵義航天高中高三(最后沖刺)數(shù)學(xué)試卷含解析_第4頁
2025屆貴州遵義航天高中高三(最后沖刺)數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆貴州遵義航天高中高三(最后沖刺)數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.定義在R上的函數(shù)y=fx滿足fx≤2x-1A. B. C. D.2.若(1+2ai)i=1-bi,其中a,b∈R,則|a+bi|=().A. B. C. D.53.已知數(shù)列的首項(xiàng),且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有4.已知變量,滿足不等式組,則的最小值為()A. B. C. D.5.歷史上有不少數(shù)學(xué)家都對圓周率作過研究,第一個用科學(xué)方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長確定圓周長的上下界,開創(chuàng)了圓周率計(jì)算的幾何方法,而中國數(shù)學(xué)家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱為割圓術(shù).近代無窮乘積式、無窮連分?jǐn)?shù)、無窮級數(shù)等各種值的表達(dá)式紛紛出現(xiàn),使得值的計(jì)算精度也迅速增加.華理斯在1655年求出一個公式:,根據(jù)該公式繪制出了估計(jì)圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是A. B. C. D.6.已知向量,,則與共線的單位向量為()A. B.C.或 D.或7.已知二次函數(shù)的部分圖象如圖所示,則函數(shù)的零點(diǎn)所在區(qū)間為()A. B. C. D.8.已知集合,B={y∈N|y=x﹣1,x∈A},則A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}9.已知為銳角,且,則等于()A. B. C. D.10.已知,則()A. B. C. D.211.中,點(diǎn)在邊上,平分,若,,,,則()A. B. C. D.12.已知函數(shù)是奇函數(shù),則的值為()A.-10 B.-9 C.-7 D.1二、填空題:本題共4小題,每小題5分,共20分。13.若正實(shí)數(shù)x,y,滿足x+2y=5,則x214.已知函數(shù),在區(qū)間上隨機(jī)取一個數(shù),則使得≥0的概率為.15.設(shè)為銳角,若,則的值為____________.16.過動點(diǎn)作圓:的切線,其中為切點(diǎn),若(為坐標(biāo)原點(diǎn)),則的最小值是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),且.(1)求的解析式;(2)已知,若對任意的,總存在,使得成立,求的取值范圍.18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若恒成立,求實(shí)數(shù)的取值范圍.19.(12分)已知數(shù)列滿足,,其前n項(xiàng)和為.(1)通過計(jì)算,,,猜想并證明數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列滿足,,,若數(shù)列是單調(diào)遞減數(shù)列,求常數(shù)t的取值范圍.20.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求直線與曲線的普通方程,并求出直線的傾斜角;(2)記直線與軸的交點(diǎn)為是曲線上的動點(diǎn),求點(diǎn)的最大距離.21.(12分)已知數(shù)列的通項(xiàng),數(shù)列為等比數(shù)列,且,,成等差數(shù)列.(1)求數(shù)列的通項(xiàng);(2)設(shè),求數(shù)列的前項(xiàng)和.22.(10分)如圖,是矩形,的頂點(diǎn)在邊上,點(diǎn),分別是,上的動點(diǎn)(的長度滿足需求).設(shè),,,且滿足.(1)求;(2)若,,求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

根據(jù)y=fx+1為奇函數(shù),得到函數(shù)關(guān)于1,0中心對稱,排除AB,計(jì)算f1.5≤【詳解】y=fx+1為奇函數(shù),即fx+1=-f-x+1,函數(shù)關(guān)于f1.5≤2故選:D.【點(diǎn)睛】本題考查了函數(shù)圖像的識別,確定函數(shù)關(guān)于1,0中心對稱是解題的關(guān)鍵.2、C【解析】試題分析:由已知,-2a+i=1-bi,根據(jù)復(fù)數(shù)相等的充要條件,有a=-,b=-1所以|a+bi|=,選C考點(diǎn):復(fù)數(shù)的代數(shù)運(yùn)算,復(fù)數(shù)相等的充要條件,復(fù)數(shù)的模3、C【解析】

根據(jù)等差數(shù)列和等比數(shù)列的定義進(jìn)行判斷即可.【詳解】A:當(dāng)時,,顯然符合是等差數(shù)列,但是此時不成立,故本說法不正確;B:當(dāng)時,,顯然符合是等比數(shù)列,但是此時不成立,故本說法不正確;C:當(dāng)時,因此有常數(shù),因此是等差數(shù)列,因此當(dāng)不是等差數(shù)列時,一定有,故本說法正確;D:當(dāng)時,若時,顯然數(shù)列是等比數(shù)列,故本說法不正確.故選:C【點(diǎn)睛】本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎(chǔ)題.4、B【解析】

先根據(jù)約束條件畫出可行域,再利用幾何意義求最值.【詳解】解:由變量,滿足不等式組,畫出相應(yīng)圖形如下:可知點(diǎn),,在處有最小值,最小值為.故選:B.【點(diǎn)睛】本題主要考查簡單的線性規(guī)劃,運(yùn)用了數(shù)形結(jié)合的方法,屬于基礎(chǔ)題.5、B【解析】

初始:,,第一次循環(huán):,,繼續(xù)循環(huán);第二次循環(huán):,,此時,滿足條件,結(jié)束循環(huán),所以判斷框內(nèi)填入的條件可以是,所以正整數(shù)的最小值是3,故選B.6、D【解析】

根據(jù)題意得,設(shè)與共線的單位向量為,利用向量共線和單位向量模為1,列式求出即可得出答案.【詳解】因?yàn)?,,則,所以,設(shè)與共線的單位向量為,則,解得或所以與共線的單位向量為或.故選:D.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算以及共線定理和單位向量的定義.7、B【解析】由函數(shù)f(x)的圖象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上單調(diào)遞增,又g(0)=1-b<0,g(1)=e+2-b>0,根據(jù)函數(shù)的零點(diǎn)存在性定理可知,函數(shù)g(x)的零點(diǎn)所在的區(qū)間是(0,1),故選B.8、A【解析】

解出集合A和B即可求得兩個集合的并集.【詳解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故選:A.【點(diǎn)睛】此題考查求集合的并集,關(guān)鍵在于準(zhǔn)確求解不等式,根據(jù)描述法表示的集合,準(zhǔn)確寫出集合中的元素.9、C【解析】

由可得,再利用計(jì)算即可.【詳解】因?yàn)?,,所以,所?故選:C.【點(diǎn)睛】本題考查二倍角公式的應(yīng)用,考查學(xué)生對三角函數(shù)式化簡求值公式的靈活運(yùn)用的能力,屬于基礎(chǔ)題.10、B【解析】

結(jié)合求得的值,由此化簡所求表達(dá)式,求得表達(dá)式的值.【詳解】由,以及,解得..故選:B【點(diǎn)睛】本小題主要考查利用同角三角函數(shù)的基本關(guān)系式化簡求值,考查二倍角公式,屬于中檔題.11、B【解析】

由平分,根據(jù)三角形內(nèi)角平分線定理可得,再根據(jù)平面向量的加減法運(yùn)算即得答案.【詳解】平分,根據(jù)三角形內(nèi)角平分線定理可得,又,,,,..故選:.【點(diǎn)睛】本題主要考查平面向量的線性運(yùn)算,屬于基礎(chǔ)題.12、B【解析】

根據(jù)分段函數(shù)表達(dá)式,先求得的值,然后結(jié)合的奇偶性,求得的值.【詳解】因?yàn)楹瘮?shù)是奇函數(shù),所以,.故選:B【點(diǎn)睛】本題主要考查分段函數(shù)的解析式、分段函數(shù)求函數(shù)值,考查數(shù)形結(jié)合思想.意在考查學(xué)生的運(yùn)算能力,分析問題、解決問題的能力.二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】

分析:將題中的式子進(jìn)行整理,將x+1當(dāng)做一個整體,之后應(yīng)用已知兩個正數(shù)的整式形式和為定值,求分式形式和的最值的問題的求解方法,即可求得結(jié)果.詳解:x2-3x+1+2點(diǎn)睛:該題屬于應(yīng)用基本不等式求最值的問題,解決該題的關(guān)鍵是需要對式子進(jìn)行化簡,轉(zhuǎn)化,利用整體思維,最后注意此類問題的求解方法-------相乘,即可得結(jié)果.14、【解析】試題分析:可以得出,所以在區(qū)間上使的范圍為,所以使得≥0的概率為考點(diǎn):本小題主要考查與長度有關(guān)的幾何概型的概率計(jì)算.點(diǎn)評:幾何概型適用于解決一切均勻分布的問題,包括“長度”、“角度”、“面積”、“體積”等,但要注意求概率時做比的上下“測度”要一致.15、【解析】

∵為銳角,,∴,∴,,故.16、【解析】解答:由圓的方程可得圓心C的坐標(biāo)為(2,2),半徑等于1.由M(a,b),則|MN|2=(a?2)2+(b?2)2?12=a2+b2?4a?4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2?4a?4b+7=a2+b2.整理得:4a+4b?7=0.∴a,b滿足的關(guān)系為:4a+4b?7=0.求|MN|的最小值,就是求|MO|的最小值.在直線4a+4b?7=0上取一點(diǎn)到原點(diǎn)距離最小,由“垂線段最短”得,直線OM垂直直線4a+4b?7=0,由點(diǎn)到直線的距離公式得:MN的最小值為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)由,可求出的值,進(jìn)而可求得的解析式;(2)分別求得和的值域,再結(jié)合兩個函數(shù)的值域間的關(guān)系可求出的取值范圍.【詳解】(1)因?yàn)?所以,解得,故.(2)因?yàn)?所以,所以,則,圖象的對稱軸是.因?yàn)?所以,則,解得,故的取值范圍是.【點(diǎn)睛】本題考查了三角函數(shù)的恒等變換,考查了二次函數(shù)及三角函數(shù)值域的求法,考查了學(xué)生的計(jì)算求解能力,屬于中檔題.18、(1)當(dāng)時,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;(2).【解析】

(1)對a分三種情況討論求出函數(shù)的單調(diào)性;(2)對a分三種情況,先求出每一種情況下函數(shù)f(x)的最小值,再解不等式得解.【詳解】(1),當(dāng)時,,在上單調(diào)遞增;當(dāng)時,,,,,∴在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時,,,,,∴在上單調(diào)遞減,在上單調(diào)遞增.綜上:當(dāng)時,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增.(2)由(1)可知:當(dāng)時,,∴成立.當(dāng)時,,,∴.當(dāng)時,,,∴,即.綜上.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和不等式的恒成立問題,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.19、(1),證明見解析;(2)【解析】

(1)首先利用賦值法求出的值,進(jìn)一步利用定義求出數(shù)列的通項(xiàng)公式;(2)首先利用疊乘法求出數(shù)列的通項(xiàng)公式,進(jìn)一步利用數(shù)列的單調(diào)性和基本不等式的應(yīng)用求出參數(shù)的范圍.【詳解】(1)數(shù)列滿足,,其前項(xiàng)和為.所以,,則,,,所以猜想得:.證明:由于,所以,則:(常數(shù)),所以數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列.所以,整理得.(2)數(shù)列滿足,,所以,則,所以.則,所以,所以,整理得,由于,所以,即.【點(diǎn)睛】本題考查的知識要點(diǎn):數(shù)列的通項(xiàng)公式的求法及應(yīng)用,疊乘法的應(yīng)用,函數(shù)的單調(diào)性在數(shù)列中的應(yīng)用,基本不等式的應(yīng)用,主要考察學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于中檔題型.20、(1),,直線的傾斜角為(2)【解析】

(1)由公式消去參數(shù)得普通方程,由公式可得直角坐標(biāo)方程后可得傾斜角;(2)求出直線與軸交點(diǎn),用參數(shù)表示點(diǎn)坐標(biāo),求出,利用三角函數(shù)的性質(zhì)可得最大值.【詳解】(1)由,消去得的普通方程是:由,得,將代入上式,化簡得直線的傾斜角為(2)在曲線上任取一點(diǎn),直線與軸的交點(diǎn)的坐標(biāo)為則當(dāng)且僅當(dāng)時,取最大值.【點(diǎn)睛】本題考查參數(shù)方程與普通方程的互化,考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,屬于基礎(chǔ)題.求兩點(diǎn)間距離的最值時,用參數(shù)方程設(shè)點(diǎn)的坐標(biāo)可把問題轉(zhuǎn)化為三角函數(shù)問題.21、(1);(2).【解析】

(1)根據(jù),,成等差數(shù)列以及為等比數(shù)列,通過直接對進(jìn)行賦值計(jì)算出的首項(xiàng)和公比,即可求解出的通項(xiàng)公式;(2)的通項(xiàng)公式符合等差乘以等比的形式,采用錯位相減法進(jìn)行求和.【詳解】(1)數(shù)列為等比數(shù)列,且,,成等差數(shù)列.設(shè)數(shù)列的公比為,,,解得(2),,,,.【點(diǎn)睛】本題考查等差、等比數(shù)列的綜合以及錯位相減法求和的應(yīng)用,難度一般.判斷是否適合使用錯位相減法,可根據(jù)數(shù)列的通項(xiàng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論