上海市徐匯中學2025屆高三3月份模擬考試數(shù)學試題含解析_第1頁
上海市徐匯中學2025屆高三3月份模擬考試數(shù)學試題含解析_第2頁
上海市徐匯中學2025屆高三3月份模擬考試數(shù)學試題含解析_第3頁
上海市徐匯中學2025屆高三3月份模擬考試數(shù)學試題含解析_第4頁
上海市徐匯中學2025屆高三3月份模擬考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

上海市徐匯中學2025屆高三3月份模擬考試數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,則集合真子集的個數(shù)為()A.3 B.4 C.7 D.82.二項式展開式中,項的系數(shù)為()A. B. C. D.3.如圖,在平行四邊形中,為對角線的交點,點為平行四邊形外一點,且,,則()A. B.C. D.4.正方體,是棱的中點,在任意兩個中點的連線中,與平面平行的直線有幾條()A.36 B.21 C.12 D.65.已知點,點在曲線上運動,點為拋物線的焦點,則的最小值為()A. B. C. D.46.函數(shù)與的圖象上存在關(guān)于直線對稱的點,則的取值范圍是()A. B. C. D.7.命題“”的否定是()A. B.C. D.8.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.49.在四面體中,為正三角形,邊長為6,,,,則四面體的體積為()A. B. C.24 D.10.已知平面和直線a,b,則下列命題正確的是()A.若∥,b∥,則∥ B.若,,則∥C.若∥,,則 D.若,b∥,則11.一個幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側(cè)視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.12.已知雙曲線:的左、右兩個焦點分別為,,若存在點滿足,則該雙曲線的離心率為()A.2 B. C. D.5二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),滿足約束條件,則的最大值為______.14.在棱長為6的正方體中,是的中點,點是面,所在平面內(nèi)的動點,且滿足,則三棱錐的體積的最大值是__________.15.已知復數(shù),其中為虛數(shù)單位,則的模為_______________.16.已知函數(shù),若,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在四棱錐中,底面為正方形,,,,,為的中點,為棱上的一點.(1)證明:面面;(2)當為中點時,求二面角余弦值.18.(12分)函數(shù),且恒成立.(1)求實數(shù)的集合;(2)當時,判斷圖象與圖象的交點個數(shù),并證明.(參考數(shù)據(jù):)19.(12分)已知拋物線,直線與交于,兩點,且.(1)求的值;(2)如圖,過原點的直線與拋物線交于點,與直線交于點,過點作軸的垂線交拋物線于點,證明:直線過定點.20.(12分)如圖,湖中有一個半徑為千米的圓形小島,岸邊點與小島圓心相距千米,為方便游人到小島觀光,從點向小島建三段棧道,,,湖面上的點在線段上,且,均與圓相切,切點分別為,,其中棧道,,和小島在同一個平面上.沿圓的優(yōu)弧(圓上實線部分)上再修建棧道.記為.用表示棧道的總長度,并確定的取值范圍;求當為何值時,棧道總長度最短.21.(12分)據(jù)《人民網(wǎng)》報道,美國國家航空航天局(NASA)發(fā)文稱,相比20年前世界變得更綠色了,衛(wèi)星資料顯示中國和印度的行動主導了地球變綠.據(jù)統(tǒng)計,中國新增綠化面積的來自于植樹造林,下表是中國十個地區(qū)在去年植樹造林的相關(guān)數(shù)據(jù).(造林總面積為人工造林、飛播造林、新封山育林、退化林修復、人工更新的面積之和)單位:公頃地區(qū)造林總面積造林方式人工造林飛播造林新封山育林退化林修復人工更新內(nèi)蒙61848431105274094136006903826950河北5833613456253333313507656533643河南14900297647134292241715376133重慶2263331006006240063333陜西297642184108336026386516067甘肅325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629寧夏91531589602293882981335北京1906410012400039991053(1)請根據(jù)上述數(shù)據(jù)分別寫出在這十個地區(qū)中人工造林面積與造林總面積的比值最大和最小的地區(qū);(2)在這十個地區(qū)中,任選一個地區(qū),求該地區(qū)新封山育林面積占造林總面積的比值超過的概率;(3)在這十個地區(qū)中,從退化林修復面積超過一萬公頃的地區(qū)中,任選兩個地區(qū),記X為這兩個地區(qū)中退化林修復面積超過六萬公頃的地區(qū)的個數(shù),求X的分布列及數(shù)學期望.22.(10分)如圖,在四棱錐中,是等邊三角形,,,.(1)若,求證:平面;(2)若,求二面角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

解出集合,再由含有個元素的集合,其真子集的個數(shù)為個可得答案.【詳解】解:由,得所以集合的真子集個數(shù)為個.故選:C【點睛】此題考查利用集合子集個數(shù)判斷集合元素個數(shù)的應(yīng)用,含有個元素的集合,其真子集的個數(shù)為個,屬于基礎(chǔ)題.2、D【解析】

寫出二項式的通項公式,再分析的系數(shù)求解即可.【詳解】二項式展開式的通項為,令,得,故項的系數(shù)為.故選:D【點睛】本題主要考查了二項式定理的運算,屬于基礎(chǔ)題.3、D【解析】

連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運算即可求出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點睛】本題考查向量的線性運算問題,屬于基礎(chǔ)題4、B【解析】

先找到與平面平行的平面,利用面面平行的定義即可得到.【詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.【點睛】本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡單的組合問題,是一中檔題.5、D【解析】

如圖所示:過點作垂直準線于,交軸于,則,設(shè),,則,利用均值不等式得到答案.【詳解】如圖所示:過點作垂直準線于,交軸于,則,設(shè),,則,當,即時等號成立.故選:.【點睛】本題考查了拋物線中距離的最值問題,意在考查學生的計算能力和轉(zhuǎn)化能力.6、C【解析】

由題可知,曲線與有公共點,即方程有解,可得有解,令,則,對分類討論,得出時,取得極大值,也即為最大值,進而得出結(jié)論.【詳解】解:由題可知,曲線與有公共點,即方程有解,即有解,令,則,則當時,;當時,,故時,取得極大值,也即為最大值,當趨近于時,趨近于,所以滿足條件.故選:C.【點睛】本題主要考查利用導數(shù)研究函數(shù)性質(zhì)的基本方法,考查化歸與轉(zhuǎn)化等數(shù)學思想,考查抽象概括、運算求解等數(shù)學能力,屬于難題.7、D【解析】

根據(jù)全稱命題的否定是特稱命題,對命題進行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點睛】本題考查全稱命題的否定,難度容易.8、A【解析】

由傾斜角的余弦值,求出正切值,即的關(guān)系,求出雙曲線的離心率.【詳解】解:設(shè)雙曲線的半個焦距為,由題意又,則,,,所以離心率,故選:A.【點睛】本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題9、A【解析】

推導出,分別取的中點,連結(jié),則,推導出,從而,進而四面體的體積為,由此能求出結(jié)果.【詳解】解:在四面體中,為等邊三角形,邊長為6,,,,,,分別取的中點,連結(jié),則,且,,,,平面,平面,,四面體的體積為:.故答案為:.【點睛】本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力.10、C【解析】

根據(jù)線面的位置關(guān)系,結(jié)合線面平行的判定定理、平行線的性質(zhì)進行判斷即可.【詳解】A:當時,也可以滿足∥,b∥,故本命題不正確;B:當時,也可以滿足,,故本命題不正確;C:根據(jù)平行線的性質(zhì)可知:當∥,,時,能得到,故本命題是正確的;D:當時,也可以滿足,b∥,故本命題不正確.故選:C【點睛】本題考查了線面的位置關(guān)系,考查了平行線的性質(zhì),考查了推理論證能力.11、D【解析】

由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個圓錐,表面積為,故選D.12、B【解析】

利用雙曲線的定義和條件中的比例關(guān)系可求.【詳解】.選B.【點睛】本題主要考查雙曲線的定義及離心率,離心率求解時,一般是把已知條件,轉(zhuǎn)化為a,b,c的關(guān)系式.二、填空題:本題共4小題,每小題5分,共20分。13、29【解析】

由約束條件作出可行域,化目標函數(shù)為以原點為圓心的圓,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.【詳解】由約束條件作出可行域如圖:聯(lián)立,解得,目標函數(shù)是以原點為圓心,以為半徑的圓,由圖可知,此圓經(jīng)過點A時,半徑最大,此時也最大,最大值為.所以本題答案為29.【點睛】線性規(guī)劃問題,首先明確可行域?qū)?yīng)的是封閉區(qū)域還是開放區(qū)域、分界線是實線還是虛線,其次確定目標函數(shù)的幾何意義,是求直線的截距、兩點間距離的平方、直線的斜率、還是點到直線的距離等等,最后結(jié)合圖形確定目標函數(shù)最值取法、值域范圍.14、【解析】

根據(jù)與相似,,過作于,利用體積公式求解OP最值,根據(jù)勾股定理得出,,利用函數(shù)單調(diào)性判斷求解即可.【詳解】∵在棱長為6的正方體中,是的中點,點是面所在平面內(nèi)的動點,且滿足,又,∴與相似∴,即,過作于,設(shè),,∴,化簡得:,,根據(jù)函數(shù)單調(diào)性判斷,時,取得最大值36,,在正方體中平面.三棱錐體積的最大值為【點睛】本題考查三角形相似,幾何體體積以及函數(shù)單調(diào)性的綜合應(yīng)用,難度一般.15、【解析】

利用復數(shù)模的計算公式求解即可.【詳解】解:由,得,所以.故答案為:.【點睛】本題考查復數(shù)模的求法,屬于基礎(chǔ)題.16、【解析】

根據(jù)題意,利用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性,利用函數(shù)奇偶性的性質(zhì)求解即可.【詳解】因為函數(shù),其定義域為,所以其定義域關(guān)于原點對稱,又,所以函數(shù)為奇函數(shù),因為,所以.故答案為:【點睛】本題考查函數(shù)奇偶性的判斷及其性質(zhì);考查運算求解能力;熟練掌握函數(shù)奇偶性的判斷方法是求解本題的關(guān)鍵;屬于中檔題、常考題型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】

(1)要證明面面,只需證明面即可;(2)以為坐標原點,以,,分別為,,軸建系,分別計算出面法向量,面的法向量,再利用公式計算即可.【詳解】證明:(1)因為底面為正方形,所以又因為,,滿足,所以又,面,面,,所以面.又因為面,所以,面面.(2)由(1)知,,兩兩垂直,以為坐標原點,以,,分別為,,軸建系如圖所示,則,,,,則,.所以,,,,設(shè)面法向量為,則由得,令得,,即;同理,設(shè)面的法向量為,則由得,令得,,即,所以,設(shè)二面角的大小為,則所以二面角余弦值為.【點睛】本題考查面面垂直的證明以及利用向量法求二面角,考查學生的運算求解能力,此類問題關(guān)鍵是準確寫出點的坐標,是一道中檔題.18、(1);(2)2個,證明見解析【解析】

(1)要恒成立,只要的最小值大于或等于零即可,所以只要討論求解看是否有最小值;(2)將圖像與圖像的交點個數(shù)轉(zhuǎn)化為方程實數(shù)解的個數(shù)問題,然后構(gòu)造函數(shù),再利用導數(shù)討論此函數(shù)零點的個數(shù).【詳解】(1)的定義域為,因為,1°當時,在上單調(diào)遞減,時,使得,與條件矛盾;2°當時,由,得;由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,即有,由恒成立,所以恒成立,令,若;若;而時,,要使恒成立,故.(2)原問題轉(zhuǎn)化為方程實根個數(shù)問題,當時,圖象與圖象有且僅有2個交點,理由如下:由,即,令,因為,所以是的一根;,1°當時,,所以在上單調(diào)遞減,,即在上無實根;2°當時,,則在上單調(diào)遞遞增,又,所以在上有唯一實根,且滿足,①當時,在上單調(diào)遞減,此時在上無實根;②當時,在上單調(diào)遞增,,故在上有唯一實根.3°當時,由(1)知,在上單調(diào)遞增,所以,故,所以在上無實根.綜合1°,2°,3°,故有兩個實根,即圖象與圖象有且僅有2個交點.【點睛】此題考查不等式恒成立問題、函數(shù)與方程的轉(zhuǎn)化思想,考查導數(shù)的運用,屬于較難題.19、(1);(2)見解析【解析】

(1)聯(lián)立直線和拋物線,消去可得,求出,,再代入弦長公式計算即可.(2)由(1)可得,設(shè),計算直線的方程為,代入求出,即可求出,再代入拋物線方程,求出,最后計算直線的斜率,求出直線的方程,化簡可得到恒過的定點.【詳解】(1)由,消去可得,設(shè),,則,.,解得或(舍去),.(2)證明:由(1)可得,設(shè),所以直線的方程為,當時,,則,代入拋物線方程,可得,,所以直線的斜率,直線的方程為,整理可得,故直線過定點.【點睛】本題第一問考查直線與拋物線相交的弦長問題,需熟記弦長公式.第二問考查直線方程和直線恒過定點問題,需有較強的計算能力,屬于難題.20、,;當時,棧道總長度最短.【解析】

連,,由切線長定理知:,,,,即,,則,,進而確定的取值范圍;根據(jù)求導得,利用增減性算出,進而求得取值.【詳解】解:連,,由切線長定理知:,,,又,,故,則劣弧的長為,因此,優(yōu)弧的長為,又,故,,即,,所以,,,則;,,其中,,-0+單調(diào)遞減極小值單調(diào)遞增故時,所以當時,棧道總長度最短.【點睛】本題主要考查導數(shù)在函數(shù)當中的應(yīng)用,屬于中檔題.21、(1)人工造林面積與總面積比最大的地區(qū)為甘肅省,人工造林面積與總面積比最小的地區(qū)為青海?。唬?);(3)分布列見詳解,數(shù)學期望為【解析】

(1)通過數(shù)據(jù)的觀察以及計算人工造林面積與造林總面積比值,可得結(jié)果.(2)通過數(shù)據(jù)的觀察以及計算新封山育林面積與造林總面積比值,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論