版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
福建省東山第二中學2025屆高考仿真卷數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.等差數(shù)列中,,,則數(shù)列前6項和為()A.18 B.24 C.36 D.722.已知函數(shù)的圖像上有且僅有四個不同的點關于直線的對稱點在的圖像上,則實數(shù)的取值范圍是()A. B. C. D.3.如果,那么下列不等式成立的是()A. B.C. D.4.已知函數(shù)fx=sinωx+π6+A.16,13 B.15.已知函數(shù)f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.6.若,則“”的一個充分不必要條件是A. B.C.且 D.或7.在中所對的邊分別是,若,則()A.37 B.13 C. D.8.設,,則的值為()A. B.C. D.9.已知,是兩條不重合的直線,是一個平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則10.設f(x)是定義在R上的偶函數(shù),且在(0,+∞)單調(diào)遞減,則()A. B.C. D.11.已知雙曲線的右焦點為,過原點的直線與雙曲線的左、右兩支分別交于兩點,延長交右支于點,若,則雙曲線的離心率是()A. B. C. D.12.若,則的虛部是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐,,是邊長為4的正三角形,,分別是、的中點,為棱上一動點(點除外),,若異面直線與所成的角為,且,則______.14.如圖,在梯形中,∥,分別是的中點,若,則的值為___________.15.函數(shù)的值域為_____.16.已知數(shù)列的前項和為,,,,則滿足的正整數(shù)的所有取值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某市計劃在一片空地上建一個集購物、餐飲、娛樂為一體的大型綜合園區(qū),如圖,已知兩個購物廣場的占地都呈正方形,它們的面積分別為13公頃和8公頃;美食城和歡樂大世界的占地也都呈正方形,分別記它們的面積為公頃和公頃;由購物廣場、美食城和歡樂大世界圍成的兩塊公共綠地都呈三角形,分別記它們的面積為公頃和公頃.(1)設,用關于的函數(shù)表示,并求在區(qū)間上的最大值的近似值(精確到0.001公頃);(2)如果,并且,試分別求出、、、的值.18.(12分)已知橢圓:的離心率為,直線:與以原點為圓心,以橢圓的短半軸長為半徑的圓相切.為左頂點,過點的直線交橢圓于,兩點,直線,分別交直線于,兩點.(1)求橢圓的方程;(2)以線段為直徑的圓是否過定點?若是,寫出所有定點的坐標;若不是,請說明理由.19.(12分)語音交互是人工智能的方向之一,現(xiàn)在市場上流行多種可實現(xiàn)語音交互的智能音箱.主要代表有小米公司的“小愛同學”智能音箱和阿里巴巴的“天貓精靈”智能音箱,它們可以通過語音交互滿足人們的部分需求.某經(jīng)銷商為了了解不同智能音箱與其購買者性別之間的關聯(lián)程度,從某地區(qū)隨機抽取了100名購買“小愛同學”和100名購買“天貓精靈”的人,具體數(shù)據(jù)如下:“小愛同學”智能音箱“天貓精靈”智能音箱合計男4560105女554095合計100100200(1)若該地區(qū)共有13000人購買了“小愛同學”,有12000人購買了“天貓精靈”,試估計該地區(qū)購買“小愛同學”的女性比購買“天貓精靈”的女性多多少人?(2)根據(jù)列聯(lián)表,能否有95%的把握認為購買“小愛同學”、“天貓精靈”與性別有關?附:0.100.050.0250.010.0050.0012.7063.8415.0246.6357.87910.82820.(12分)已知橢圓C:(a>b>0)過點(0,),且滿足a+b=3.(1)求橢圓C的方程;(2)若斜率為的直線與橢圓C交于兩個不同點A,B,點M坐標為(2,1),設直線MA與MB的斜率分別為k1,k2,試問k1+k2是否為定值?并說明理由.21.(12分)已知函數(shù)(1)求函數(shù)在處的切線方程(2)設函數(shù),對于任意,恒成立,求的取值范圍.22.(10分)設函數(shù),.(Ⅰ)討論的單調(diào)性;(Ⅱ)時,若,,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由等差數(shù)列的性質(zhì)可得,根據(jù)等差數(shù)列的前項和公式可得結果.【詳解】∵等差數(shù)列中,,∴,即,∴,故選C.【點睛】本題主要考查了等差數(shù)列的性質(zhì)以及等差數(shù)列的前項和公式的應用,屬于基礎題.2、A【解析】
可將問題轉化,求直線關于直線的對稱直線,再分別討論兩函數(shù)的增減性,結合函數(shù)圖像,分析臨界點,進一步確定的取值范圍即可【詳解】可求得直線關于直線的對稱直線為,當時,,,當時,,則當時,,單減,當時,,單增;當時,,,當,,當時,單減,當時,單增;根據(jù)題意畫出函數(shù)大致圖像,如圖:當與()相切時,得,解得;當與()相切時,滿足,解得,結合圖像可知,即,故選:A【點睛】本題考查數(shù)形結合思想求解函數(shù)交點問題,導數(shù)研究函數(shù)增減性,找準臨界是解題的關鍵,屬于中檔題3、D【解析】
利用函數(shù)的單調(diào)性、不等式的基本性質(zhì)即可得出.【詳解】∵,∴,,,.故選:D.【點睛】本小題主要考查利用函數(shù)的單調(diào)性比較大小,考查不等式的性質(zhì),屬于基礎題.4、A【解析】
將fx整理為3sinωx+π3,根據(jù)x的范圍可求得ωx+π3∈π【詳解】f當x∈0,π時,又f0=3sin由fx在0,π上的值域為32解得:ω∈本題正確選項:A【點睛】本題考查利用正弦型函數(shù)的值域求解參數(shù)范圍的問題,關鍵是能夠結合正弦型函數(shù)的圖象求得角的范圍的上下限,從而得到關于參數(shù)的不等式.5、A【解析】
先通過降冪公式和輔助角法將函數(shù)轉化為,再求最值.【詳解】已知函數(shù)f(x)=sin2x+sin2(x),=,=,因為,所以f(x)的最小值為.故選:A【點睛】本題主要考查倍角公式及兩角和與差的三角函數(shù)的逆用,還考查了運算求解的能力,屬于中檔題.6、C【解析】,∴,當且僅當時取等號.故“且”是“”的充分不必要條件.選C.7、D【解析】
直接根據(jù)余弦定理求解即可.【詳解】解:∵,∴,∴,故選:D.【點睛】本題主要考查余弦定理解三角形,屬于基礎題.8、D【解析】
利用倍角公式求得的值,利用誘導公式求得的值,利用同角三角函數(shù)關系式求得的值,進而求得的值,最后利用正切差角公式求得結果.【詳解】,,,,,,,,故選:D.【點睛】該題考查的是有關三角函數(shù)求值問題,涉及到的知識點有誘導公式,正切倍角公式,同角三角函數(shù)關系式,正切差角公式,屬于基礎題目.9、D【解析】
利用空間位置關系的判斷及性質(zhì)定理進行判斷.【詳解】解:選項A中直線,還可能相交或異面,選項B中,還可能異面,選項C,由條件可得或.故選:D.【點睛】本題主要考查直線與平面平行、垂直的性質(zhì)與判定等基礎知識;考查空間想象能力、推理論證能力,屬于基礎題.10、D【解析】
利用是偶函數(shù)化簡,結合在區(qū)間上的單調(diào)性,比較出三者的大小關系.【詳解】是偶函數(shù),,而,因為在上遞減,,即.故選:D【點睛】本小題主要考查利用函數(shù)的奇偶性和單調(diào)性比較大小,屬于基礎題.11、D【解析】
設雙曲線的左焦點為,連接,,,設,則,,,和中,利用勾股定理計算得到答案.【詳解】設雙曲線的左焦點為,連接,,,設,則,,,,根據(jù)對稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.12、D【解析】
通過復數(shù)的乘除運算法則化簡求解復數(shù)為:的形式,即可得到復數(shù)的虛部.【詳解】由題可知,所以的虛部是1.故選:D.【點睛】本題考查復數(shù)的代數(shù)形式的混合運算,復數(shù)的基本概念,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
取的中點,連接,,取的中點,連接,,,直線與所成的角為,計算,,根據(jù)余弦定理計算得到答案?!驹斀狻咳〉闹悬c,連接,,依題意可得,,所以平面,所以,因為,分別、的中點,所以,因為,所以,所以平面,故,故,故兩兩垂直。取的中點,連接,,,因為,所以直線與所成的角為,設,則,,所以,化簡得,解得,即.故答案為:.【點睛】本題考查了根據(jù)異面直線夾角求長度,意在考查學生的計算能力和空間想象能力.14、【解析】
建系,設設,由可得,進一步得到的坐標,再利用數(shù)量積的坐標運算即可得到答案.【詳解】以A為坐標原點,AD為x軸建立如圖所示的直角坐標系,設,則,所以,,由,得,即,又,所以,故,,所以.故答案為:2【點睛】本題考查利用坐標法求向量的數(shù)量積,考查學生的運算求解能力,是一道中檔題.15、【解析】
利用配方法化簡式子,可得,然后根據(jù)觀察法,可得結果.【詳解】函數(shù)的定義域為所以函數(shù)的值域為故答案為:【點睛】本題考查的是用配方法求函數(shù)的值域問題,屬基礎題。16、20,21【解析】
由題意知數(shù)列奇數(shù)項和偶數(shù)項分別為等差數(shù)列和等比數(shù)列,則根據(jù)為奇數(shù)和為偶數(shù)分別算出求和公式,代入數(shù)值檢驗即可.【詳解】解:由題意知數(shù)列的奇數(shù)項構成公差為的等差數(shù)列,偶數(shù)項構成公比為的等比數(shù)列,則;.當時,,.當時,,.由此可知,滿足的正整數(shù)的所有取值為20,21.故答案為:20,21【點睛】本題考查等差數(shù)列與等比數(shù)列通項與求和公式,是綜合題,分清奇數(shù)項和偶數(shù)項是解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),最大值公頃;(2)17、25、5、5.【解析】
(1)由余弦定理求出三角形ABC的邊長BC,進而可以求出,,由面積公式求出,,即可求出,并求出最值;(2)由(1)知,,,即可求出、,再算出,代入(1)中表達式求出,?!驹斀狻浚?)由余弦定理得,,所以,,同理可得又,所以,故在區(qū)間上的最大值為,近似值為。(2)由(1)知,,,所以,進而,由知,,,故、、、的值分別是17、25、5、5?!军c睛】本題主要考查利用余弦定理解三角形以及同角三角函數(shù)平方關系的應用,意在考查學生的數(shù)學建模以及數(shù)學運算能力。18、(1);(2)是,定點坐標為或【解析】
(1)根據(jù)相切得到,根據(jù)離心率得到,得到橢圓方程.(2)設直線的方程為,點、的坐標分別為,,聯(lián)立方程得到,,計算點的坐標為,點的坐標為,圓的方程可化為,得到答案.【詳解】(1)根據(jù)題意:,因為,所以,所以橢圓的方程為.(2)設直線的方程為,點、的坐標分別為,,把直線的方程代入橢圓方程化簡得到,所以,,所以,,因為直線的斜率,所以直線的方程,所以點的坐標為,同理,點的坐標為,故以為直徑的圓的方程為,又因為,,所以圓的方程可化為,令,則有,所以定點坐標為或.【點睛】本題考查了橢圓方程,圓過定點問題,意在考查學生的計算能力和綜合應用能力.19、(1)多2350人;(2)有95%的把握認為購買“小愛同學”、“天貓精靈”與性別有關.【解析】
(1)根據(jù)題意,知100人中購買“小愛同學”的女性有55人,購買“天貓精靈”的女性有40人,即可估計該地區(qū)購買“小愛同學”的女性人數(shù)和購買“天貓精靈”的女性的人數(shù),即可求得答案;(2)根據(jù)列聯(lián)表和給出的公式,求出,與臨界值比較,即可得出結論.【詳解】解:(1)由題可知,100人中購買“小愛同學”的女性有55人,購買“天貓精靈”的女性有40人,由于地區(qū)共有13000人購買了“小愛同學”,有12000人購買了“天貓精靈”,估計購買“小愛同學”的女性有人.估計購買“天貓精靈”的女性有人.則,∴估計該地區(qū)購買“小愛同學”的女性比購買“天貓精靈”的女性多2350人.(2)由題可知,,∴有95%的把握認為購買“小愛同學”、“天貓精靈”與性別有關.【點睛】本題考查隨機抽樣估計總體以及獨立性檢驗的應用,考查計算能力.20、(1)(2)k1+k2為定值0,見解析【解析】
(1)利用已知條件直接求解,得到橢圓的方程;(2)設直線在軸上的截距為,推出直線方程,然后將直線與橢圓聯(lián)立,設,利用韋達定理求出,然后化簡求解即可.【詳解】(1)由橢圓過點(0,),則,又a+b=3,所以,故橢圓的方程為;(2),證明如下:設直線在軸上的截距為,所以直線的方程為:,由得:,由得,設,則,所以,又,所以,故.【點睛】本題主要考查了橢圓的標準方程的求解,直線與橢圓的位置關系的綜合應用,考查了方程的思想,轉化與化歸的思想,考查了學生的運算求解能力.21、(1);(2)【解析】
(1)求出,即可求出切線的點斜式方程,整理即可;(2)的取值范圍滿足,,求出,當時求出,的解,得到單調(diào)區(qū)間,極小值最小值即可.【詳解】(1)由于,此時切點坐標為所以切線方程為.(2)由已知,故.由于,故,設由于在單調(diào)遞增同時時,,時,,故存在使得且當時,當時,所以當時,當時,所以當時,取得極小值,也是最小值,故由于,所以,.【點睛】本題考查導數(shù)的幾何意義、不等式恒成立問題,應用導數(shù)求最值是解題的關鍵,考查邏輯推理、數(shù)學計算能力,屬于中檔題.22、(1)證明見解析;(2)證明見解析.【解析】
(1)首先對函數(shù)求導,再根據(jù)參數(shù)的取值,討論的正負,即可求出關于的單調(diào)性即可;(2)首先通過構造新函數(shù),討
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴陽人文科技學院《中醫(yī)基礎》2023-2024學年第一學期期末試卷
- 廣州珠江職業(yè)技術學院《食品安全與衛(wèi)生實驗》2023-2024學年第一學期期末試卷
- 2025天津市安全員A證考試題庫
- 2025吉林省安全員《B證》考試題庫及答案
- 2025陜西省建筑安全員-A證考試題庫及答案
- 《小學立定跳遠說》課件
- 找次品課課件
- 專項復習 閱讀理解
- 國際金融市場(課件)
- 單位人力資源管理制度合并大全十篇
- 2024年03月恒豐銀行2024年春季招考畢業(yè)生筆試歷年參考題庫附帶答案詳解
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應用實踐指導材料之14:“6策劃-6.3變更的策劃”(雷澤佳編制-2025B0)
- 2024年特厚板行業(yè)現(xiàn)狀分析:中國特厚板市場占總銷售量45.01%
- 2025年中國地質(zhì)調(diào)查局烏魯木齊自然資源綜合調(diào)查中心招聘19人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2024版影視制作公司與演員經(jīng)紀公司合作協(xié)議3篇
- 2024年上海市初三語文二模試題匯編之記敘文閱讀
- 2024年度上海市嘉定區(qū)工業(yè)廠房買賣合同2篇
- SAP WM模塊前臺操作詳解(S4版本)
- (正式版)HGT 22820-2024 化工安全儀表系統(tǒng)工程設計規(guī)范
- 《中華民族共同體概論》考試復習題庫(含答案)
- 【綠色評價】發(fā)展綠色指標評價測試五年級《英語》第一學期上冊期末試卷及答案解析
評論
0/150
提交評論