2025屆河南省林州市林濾中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第1頁(yè)
2025屆河南省林州市林濾中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第2頁(yè)
2025屆河南省林州市林濾中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第3頁(yè)
2025屆河南省林州市林濾中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第4頁(yè)
2025屆河南省林州市林濾中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆河南省林州市林濾中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),給出下列四個(gè)結(jié)論:①函數(shù)的值域是;②函數(shù)為奇函數(shù);③函數(shù)在區(qū)間單調(diào)遞減;④若對(duì)任意,都有成立,則的最小值為;其中正確結(jié)論的個(gè)數(shù)是()A. B. C. D.2.設(shè)集合,,則()A. B.C. D.3.如圖,拋物線:的焦點(diǎn)為,過(guò)點(diǎn)的直線與拋物線交于,兩點(diǎn),若直線與以為圓心,線段(為坐標(biāo)原點(diǎn))長(zhǎng)為半徑的圓交于,兩點(diǎn),則關(guān)于值的說(shuō)法正確的是()A.等于4 B.大于4 C.小于4 D.不確定4.設(shè),且,則()A. B. C. D.5.已知是雙曲線的左、右焦點(diǎn),若點(diǎn)關(guān)于雙曲線漸近線的對(duì)稱點(diǎn)滿足(為坐標(biāo)原點(diǎn)),則雙曲線的漸近線方程為()A. B. C. D.6.已知一個(gè)三棱錐的三視圖如圖所示,其中三視圖的長(zhǎng)、寬、高分別為,,,且,則此三棱錐外接球表面積的最小值為()A. B. C. D.7.關(guān)于函數(shù)在區(qū)間的單調(diào)性,下列敘述正確的是()A.單調(diào)遞增 B.單調(diào)遞減 C.先遞減后遞增 D.先遞增后遞減8.已知,,,則()A. B.C. D.9.復(fù)數(shù)的虛部是()A. B. C. D.10.圓心為且和軸相切的圓的方程是()A. B.C. D.11.五行學(xué)說(shuō)是華夏民族創(chuàng)造的哲學(xué)思想,是華夏文明重要組成部分.古人認(rèn)為,天下萬(wàn)物皆由金、木、水、火、土五類元素組成,如圖,分別是金、木、水、火、土彼此之間存在的相生相克的關(guān)系.若從5類元素中任選2類元素,則2類元素相生的概率為()A. B. C. D.12.將函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,再將圖像上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,若為奇函數(shù),則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.角的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與軸的非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn),則的值是.14.在四棱錐中,底面為正方形,面分別是棱的中點(diǎn),過(guò)的平面交棱于點(diǎn),則四邊形面積為_(kāi)_________.15.的展開(kāi)式中常數(shù)項(xiàng)是___________.16.如圖,已知一塊半徑為2的殘缺的半圓形材料,O為半圓的圓心,,殘缺部分位于過(guò)點(diǎn)C的豎直線的右側(cè),現(xiàn)要在這塊材料上裁出一個(gè)直角三角形,若該直角三角形一條邊在上,則裁出三角形面積的最大值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),.(1)若曲線在點(diǎn)處的切線方程為,求,;(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.18.(12分)已知橢圓的左、右頂點(diǎn)分別為、,上、下頂點(diǎn)分別為,,為其右焦點(diǎn),,且該橢圓的離心率為;(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)過(guò)點(diǎn)作斜率為的直線交橢圓于軸上方的點(diǎn),交直線于點(diǎn),直線與橢圓的另一個(gè)交點(diǎn)為,直線與直線交于點(diǎn).若,求取值范圍.19.(12分)一年之計(jì)在于春,一日之計(jì)在于晨,春天是播種的季節(jié),是希望的開(kāi)端.某種植戶對(duì)一塊地的個(gè)坑進(jìn)行播種,每個(gè)坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨(dú)立.對(duì)每一個(gè)坑而言,如果至少有兩粒種子發(fā)芽,則不需要進(jìn)行補(bǔ)播種,否則要補(bǔ)播種.(1)當(dāng)取何值時(shí),有3個(gè)坑要補(bǔ)播種的概率最大?最大概率為多少?(2)當(dāng)時(shí),用表示要補(bǔ)播種的坑的個(gè)數(shù),求的分布列與數(shù)學(xué)期望.20.(12分)2018年反映社會(huì)現(xiàn)實(shí)的電影《我不是藥神》引起了很大的轟動(dòng),治療特種病的創(chuàng)新藥研發(fā)成了當(dāng)務(wù)之急.為此,某藥企加大了研發(fā)投入,市場(chǎng)上治療一類慢性病的特效藥品的研發(fā)費(fèi)用(百萬(wàn)元)和銷量(萬(wàn)盒)的統(tǒng)計(jì)數(shù)據(jù)如下:研發(fā)費(fèi)用(百萬(wàn)元)2361013151821銷量(萬(wàn)盒)1122.53.53.54.56(1)求與的相關(guān)系數(shù)精確到0.01,并判斷與的關(guān)系是否可用線性回歸方程模型擬合?(規(guī)定:時(shí),可用線性回歸方程模型擬合);(2)該藥企準(zhǔn)備生產(chǎn)藥品的三類不同的劑型,,,并對(duì)其進(jìn)行兩次檢測(cè),當(dāng)?shù)谝淮螜z測(cè)合格后,才能進(jìn)行第二次檢測(cè).第一次檢測(cè)時(shí),三類劑型,,合格的概率分別為,,,第二次檢測(cè)時(shí),三類劑型,,合格的概率分別為,,.兩次檢測(cè)過(guò)程相互獨(dú)立,設(shè)經(jīng)過(guò)兩次檢測(cè)后,,三類劑型合格的種類數(shù)為,求的數(shù)學(xué)期望.附:(1)相關(guān)系數(shù)(2),,,.21.(12分)在平面直角坐標(biāo)系xoy中,曲線C的方程為.以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.(1)寫(xiě)出曲線C的極坐標(biāo)方程,并求出直線l與曲線C的交點(diǎn)M,N的極坐標(biāo);(2)設(shè)P是橢圓上的動(dòng)點(diǎn),求面積的最大值.22.(10分)如圖,在中,角的對(duì)邊分別為,且滿足,線段的中點(diǎn)為.(Ⅰ)求角的大??;(Ⅱ)已知,求的大小.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

化的解析式為可判斷①,求出的解析式可判斷②,由得,結(jié)合正弦函數(shù)得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數(shù),故②錯(cuò)誤;當(dāng)時(shí),,單調(diào)遞減,故③正確;若對(duì)任意,都有成立,則為最小值點(diǎn),為最大值點(diǎn),則的最小值為,故④正確.故選:C.【點(diǎn)睛】本題考查三角函數(shù)的綜合運(yùn)用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問(wèn)題.2、D【解析】

利用一元二次不等式的解法和集合的交運(yùn)算求解即可.【詳解】由題意知,集合,,由集合的交運(yùn)算可得,.故選:D【點(diǎn)睛】本題考查一元二次不等式的解法和集合的交運(yùn)算;考查運(yùn)算求解能力;屬于基礎(chǔ)題.3、A【解析】

利用的坐標(biāo)為,設(shè)直線的方程為,然后聯(lián)立方程得,最后利用韋達(dá)定理求解即可【詳解】據(jù)題意,得點(diǎn)的坐標(biāo)為.設(shè)直線的方程為,點(diǎn),的坐標(biāo)分別為,.討論:當(dāng)時(shí),;當(dāng)時(shí),據(jù),得,所以,所以.【點(diǎn)睛】本題考查直線與拋物線的相交問(wèn)題,解題核心在于聯(lián)立直線與拋物線的方程,屬于基礎(chǔ)題4、C【解析】

將等式變形后,利用二次根式的性質(zhì)判斷出,即可求出的范圍.【詳解】即故選:C【點(diǎn)睛】此題考查解三角函數(shù)方程,恒等變化后根據(jù)的關(guān)系即可求解,屬于簡(jiǎn)單題目.5、B【解析】

先利用對(duì)稱得,根據(jù)可得,由幾何性質(zhì)可得,即,從而解得漸近線方程.【詳解】如圖所示:由對(duì)稱性可得:為的中點(diǎn),且,所以,因?yàn)?,所以,故而由幾何性質(zhì)可得,即,故漸近線方程為,故選B.【點(diǎn)睛】本題考查了點(diǎn)關(guān)于直線對(duì)稱點(diǎn)的知識(shí),考查了雙曲線漸近線方程,由題意得出是解題的關(guān)鍵,屬于中檔題.6、B【解析】

根據(jù)三視圖得到幾何體為一三棱錐,并以該三棱錐構(gòu)造長(zhǎng)方體,于是得到三棱錐的外接球即為長(zhǎng)方體的外接球,進(jìn)而得到外接球的半徑,求得外接球的面積后可求出最小值.【詳解】由已知條件及三視圖得,此三棱錐的四個(gè)頂點(diǎn)位于長(zhǎng)方體的四個(gè)頂點(diǎn),即為三棱錐,且長(zhǎng)方體的長(zhǎng)、寬、高分別為,∴此三棱錐的外接球即為長(zhǎng)方體的外接球,且球半徑為,∴三棱錐外接球表面積為,∴當(dāng)且僅當(dāng),時(shí),三棱錐外接球的表面積取得最小值為.故選B.【點(diǎn)睛】(1)解決關(guān)于外接球的問(wèn)題的關(guān)鍵是抓住外接的特點(diǎn),即球心到多面體的頂點(diǎn)的距離都等于球的半徑,同時(shí)要作一圓面起襯托作用.(2)長(zhǎng)方體的外接球的直徑即為長(zhǎng)方體的體對(duì)角線,對(duì)于一些比較特殊的三棱錐,在研究其外接球的問(wèn)題時(shí)可考慮通過(guò)構(gòu)造長(zhǎng)方體,通過(guò)長(zhǎng)方體的外球球來(lái)研究三棱錐的外接球的問(wèn)題.7、C【解析】

先用誘導(dǎo)公式得,再根據(jù)函數(shù)圖像平移的方法求解即可.【詳解】函數(shù)的圖象可由向左平移個(gè)單位得到,如圖所示,在上先遞減后遞增.故選:C【點(diǎn)睛】本題考查三角函數(shù)的平移與單調(diào)性的求解.屬于基礎(chǔ)題.8、C【解析】

利用二倍角公式,和同角三角函數(shù)的商數(shù)關(guān)系式,化簡(jiǎn)可得,即可求得結(jié)果.【詳解】,所以,即.故選:C.【點(diǎn)睛】本題考查三角恒等變換中二倍角公式的應(yīng)用和弦化切化簡(jiǎn)三角函數(shù),難度較易.9、C【解析】因?yàn)?,所以的虛部是,故選C.10、A【解析】

求出所求圓的半徑,可得出所求圓的標(biāo)準(zhǔn)方程.【詳解】圓心為且和軸相切的圓的半徑為,因此,所求圓的方程為.故選:A.【點(diǎn)睛】本題考查圓的方程的求解,一般求出圓的圓心和半徑,考查計(jì)算能力,屬于基礎(chǔ)題.11、A【解析】

列舉出金、木、水、火、土任取兩個(gè)的所有結(jié)果共10種,其中2類元素相生的結(jié)果有5種,再根據(jù)古典概型概率公式可得結(jié)果.【詳解】金、木、水、火、土任取兩類,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10種結(jié)果,其中兩類元素相生的有火木、火土、木水、水金、金土共5結(jié)果,所以2類元素相生的概率為,故選A.【點(diǎn)睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時(shí),找準(zhǔn)基本事件個(gè)數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個(gè)數(shù)較少且易一一列舉出的;(2)樹(shù)狀圖法:適合于較為復(fù)雜的問(wèn)題中的基本亊件的探求.在找基本事件個(gè)數(shù)時(shí),一定要按順序逐個(gè)寫(xiě)出:先,….,再,…..依次….…這樣才能避免多寫(xiě)、漏寫(xiě)現(xiàn)象的發(fā)生.12、C【解析】

根據(jù)三角函數(shù)的變換規(guī)則表示出,根據(jù)是奇函數(shù),可得的取值,再求其最小值.【詳解】解:由題意知,將函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,得,再將圖像上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的6倍(縱坐標(biāo)不變),得到函數(shù)的圖像,,因?yàn)槭瞧婧瘮?shù),所以,解得,因?yàn)椋缘淖钚≈禐?故選:【點(diǎn)睛】本題考查三角函數(shù)的變換以及三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:由三角函數(shù)定義知,又由誘導(dǎo)公式知,所以答案應(yīng)填:.考點(diǎn):1、三角函數(shù)定義;2、誘導(dǎo)公式.14、【解析】

設(shè)是中點(diǎn),由于分別是棱的中點(diǎn),所以,所以,所以四邊形是平行四邊形.由于平面,所以,而,,所以平面,所以.由于,所以,也即,所以四邊形是矩形.而.從而.故答案為:.【點(diǎn)睛】本小題主要考查空間平面圖形面積的計(jì)算,考查線面垂直的判定,考查空間想象能力和邏輯推理能力,屬于中檔題.15、-160【解析】試題分析:常數(shù)項(xiàng)為.考點(diǎn):二項(xiàng)展開(kāi)式系數(shù)問(wèn)題.16、【解析】

分兩種情況討論:(1)斜邊在BC上,設(shè),則,(2)若在若一條直角邊在上,設(shè),則,進(jìn)一步利用導(dǎo)數(shù)的應(yīng)用和三角函數(shù)關(guān)系式恒等變形和函數(shù)單調(diào)性即可求出最大值.【詳解】(1)斜邊在上,設(shè),則,則,,從而.當(dāng)時(shí),此時(shí),符合.(2)若一條直角邊在上,設(shè),則,則,,由知.,當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,.當(dāng),即時(shí),最大.故答案為:.【點(diǎn)睛】此題考查實(shí)際問(wèn)題中導(dǎo)數(shù),三角函數(shù)和函數(shù)單調(diào)性的綜合應(yīng)用,注意分類討論把所有情況考慮完全,屬于一般性題目.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】

(1)對(duì)函數(shù)求導(dǎo),運(yùn)用可求得的值,再由在直線上,可求得的值;(2)由已知可得恒成立,構(gòu)造函數(shù),對(duì)函數(shù)求導(dǎo),討論和0的大小關(guān)系,結(jié)合單調(diào)性求出最大值即可求得的范圍.【詳解】(1)由題得,因?yàn)樵邳c(diǎn)與相切所以,∴(2)由得,令,只需,設(shè)(),當(dāng)時(shí),,在時(shí)為增函數(shù),所以,舍;當(dāng)時(shí),開(kāi)口向上,對(duì)稱軸為,,所以在時(shí)為增函數(shù),所以,舍;當(dāng)時(shí),二次函數(shù)開(kāi)口向下,且,所以在時(shí)有一個(gè)零點(diǎn),在時(shí),在時(shí),①當(dāng)即時(shí),在小于零,所以在時(shí)為減函數(shù),所以,符合題意;②當(dāng)即時(shí),在大于零,所以在時(shí)為增函數(shù),所以,舍.綜上所述:實(shí)數(shù)的取值范圍為【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間及函數(shù)的最小值,屬于中檔題.處理函數(shù)單調(diào)性問(wèn)題時(shí),注意利用導(dǎo)函數(shù)的正負(fù),特別是已知單調(diào)性問(wèn)題,轉(zhuǎn)化為函數(shù)導(dǎo)數(shù)恒不小于零,或恒小于零,再分離參數(shù)求解,求函數(shù)最值時(shí)分析好單調(diào)性再求極值,從而求出函數(shù)最值.18、(Ⅰ);(Ⅱ),.【解析】

(Ⅰ)由題意可得,的坐標(biāo),結(jié)合橢圓離心率,及隱含條件列式求得,的值,則橢圓方程可求;(Ⅱ)設(shè)直線,求得的坐標(biāo),再設(shè)直線,求出點(diǎn)的坐標(biāo),寫(xiě)出的方程,聯(lián)立與,可求出的坐標(biāo),由,可得關(guān)于的函數(shù)式,由單調(diào)性可得取值范圍.【詳解】(Ⅰ),,,,,由,得,又,,解得:,,.橢圓的標(biāo)準(zhǔn)方程為;(Ⅱ)設(shè)直線,則與直線的交點(diǎn),又,設(shè)直線,聯(lián)立,消可得.解得,,聯(lián)立,得,,直線,聯(lián)立,解得,,,,,,,,函數(shù)在上單調(diào)遞增,,.【點(diǎn)睛】本題考查橢圓方程的求法,考查直線與橢圓位置關(guān)系的應(yīng)用,考查運(yùn)算求解能力,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理計(jì)算能力.19、(1)當(dāng)或時(shí),有3個(gè)坑要補(bǔ)播種的概率最大,最大概率為;(2)見(jiàn)解析.【解析】

(1)將有3個(gè)坑需要補(bǔ)種表示成n的函數(shù),考查函數(shù)隨n的變化情況,即可得到n為何值時(shí)有3個(gè)坑要補(bǔ)播種的概率最大.(2)n=1時(shí),X的所有可能的取值為0,1,2,3,1.分別計(jì)算出每個(gè)變量對(duì)應(yīng)的概率,列出分布列,求期望即可.【詳解】(1)對(duì)一個(gè)坑而言,要補(bǔ)播種的概率,有3個(gè)坑要補(bǔ)播種的概率為.欲使最大,只需,解得,因?yàn)?,所以?dāng)時(shí),;當(dāng)時(shí),;所以當(dāng)或時(shí),有3個(gè)坑要補(bǔ)播種的概率最大,最大概率為.(2)由已知,的可能取值為0,1,2,3,1.,所以的分布列為01231的數(shù)學(xué)期望.【點(diǎn)睛】本題考查了古典概型的概率求法,離散型隨機(jī)變量的概率分布,二項(xiàng)分布,主要考查簡(jiǎn)單的計(jì)算,屬于中檔題.20、(1)0.98;可用線性回歸模型擬合.(2)【解析】

(1)根據(jù)題目提供的數(shù)據(jù)求出

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論