吉首大學(xué)《設(shè)計綜合表現(xiàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
吉首大學(xué)《設(shè)計綜合表現(xiàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
吉首大學(xué)《設(shè)計綜合表現(xiàn)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁吉首大學(xué)

《設(shè)計綜合表現(xiàn)》2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機視覺在安防監(jiān)控領(lǐng)域有重要應(yīng)用。假設(shè)要通過攝像頭監(jiān)控一個公共場所,以下關(guān)于計算機視覺在安防監(jiān)控中的應(yīng)用描述,哪一項是不正確的?()A.可以實時檢測異常行為,如人群聚集、奔跑等B.能夠?qū)θ藛T進(jìn)行身份識別和認(rèn)證C.計算機視覺系統(tǒng)可以獨立完成所有的安防監(jiān)控任務(wù),不需要人工干預(yù)D.與其他安防設(shè)備和系統(tǒng)集成,提高整體的安全性和防范能力2、計算機視覺在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助實現(xiàn)精準(zhǔn)農(nóng)業(yè)。假設(shè)一個農(nóng)場需要通過計算機視覺監(jiān)測農(nóng)作物的生長狀況。以下關(guān)于計算機視覺在農(nóng)業(yè)中的描述,哪一項是錯誤的?()A.可以檢測農(nóng)作物的病蟲害,及時采取防治措施B.能夠評估農(nóng)作物的生長階段和成熟度,指導(dǎo)收獲時間C.計算機視覺在農(nóng)業(yè)中的應(yīng)用完全不受天氣和光照條件的影響D.可以通過無人機搭載攝像頭進(jìn)行大面積的農(nóng)田監(jiān)測3、目標(biāo)檢測是計算機視覺中的常見任務(wù),例如在監(jiān)控視頻中檢測行人或車輛。假設(shè)我們要開發(fā)一個目標(biāo)檢測系統(tǒng),以下關(guān)于目標(biāo)檢測算法的描述,哪一項是不正確的?()A.基于區(qū)域建議的方法,如R-CNN系列算法,通過生成候選區(qū)域并對其進(jìn)行分類和定位來實現(xiàn)目標(biāo)檢測B.一階段目標(biāo)檢測算法,如YOLO和SSD,直接在圖像上進(jìn)行目標(biāo)的分類和定位,速度相對較快C.目標(biāo)檢測算法的性能通常用準(zhǔn)確率、召回率和平均精度均值(mAP)等指標(biāo)來評估D.目標(biāo)檢測算法的精度和速度是相互獨立的,提高精度不會影響速度,反之亦然4、當(dāng)利用計算機視覺進(jìn)行圖像檢索任務(wù),例如在海量圖像庫中查找相似的圖像,以下哪種圖像表示方法可能對檢索效果產(chǎn)生重要影響?()A.全局特征B.局部特征C.深度學(xué)習(xí)特征D.以上都是5、計算機視覺中的視覺跟蹤在監(jiān)控、機器人導(dǎo)航等領(lǐng)域有廣泛應(yīng)用。假設(shè)一個機器人需要跟蹤一個移動的物體,同時適應(yīng)物體的外觀變化和環(huán)境干擾。以下哪種視覺跟蹤方法能夠提供較好的長期跟蹤性能和魯棒性?()A.基于核相關(guān)濾波的跟蹤方法B.基于深度學(xué)習(xí)的孿生網(wǎng)絡(luò)跟蹤方法C.基于粒子濾波和特征匹配的跟蹤方法D.基于背景減除和運動估計的跟蹤方法6、計算機視覺中的場景文本識別旨在從圖像中識別出文字信息。假設(shè)要在一張街景圖像中識別出店鋪招牌上的文字。以下關(guān)于場景文本識別方法的描述,正確的是:()A.基于光學(xué)字符識別(OCR)技術(shù)的方法對字體和排版的變化適應(yīng)性強,識別準(zhǔn)確率高B.深度學(xué)習(xí)中的端到端文本識別模型能夠處理彎曲和變形的文本,但對模糊文本效果不佳C.場景文本識別只需要關(guān)注文本的內(nèi)容,不需要考慮文本的位置和上下文信息D.所有的場景文本識別方法都能夠在復(fù)雜的自然場景中準(zhǔn)確無誤地識別出各種文字7、當(dāng)進(jìn)行圖像的去霧處理時,假設(shè)要去除圖像中由于霧氣導(dǎo)致的模糊和低對比度。以下哪種方法可能更有效?()A.基于物理模型的去霧方法,估計大氣光和透射率B.對圖像進(jìn)行簡單的對比度增強C.不進(jìn)行去霧處理,保留有霧的效果D.隨機調(diào)整圖像的亮度和飽和度8、當(dāng)利用計算機視覺技術(shù)對醫(yī)學(xué)影像(如X光、CT等)進(jìn)行分析,輔助醫(yī)生進(jìn)行疾病診斷時,需要從大量的圖像數(shù)據(jù)中提取有價值的特征。以下哪種特征提取方法在醫(yī)學(xué)影像分析中可能具有較高的應(yīng)用價值?()A.基于形狀的特征提取B.基于紋理的特征提取C.基于深度學(xué)習(xí)的自動特征學(xué)習(xí)D.基于顏色的特征提取9、在計算機視覺的應(yīng)用中,人臉識別技術(shù)受到廣泛關(guān)注。假設(shè)一個人臉識別系統(tǒng)正在進(jìn)行身份驗證,以下關(guān)于人臉識別的描述,正確的是:()A.只依靠面部的幾何形狀信息就能實現(xiàn)準(zhǔn)確的人臉識別B.光照變化和面部表情對人臉識別的準(zhǔn)確率沒有影響C.結(jié)合深度學(xué)習(xí)模型和多模態(tài)信息,如紅外圖像,可以提高人臉識別的性能和可靠性D.人臉識別系統(tǒng)不需要考慮數(shù)據(jù)的隱私和安全問題10、當(dāng)進(jìn)行視頻中的動作識別時,假設(shè)要分析一段運動員訓(xùn)練的視頻,識別出其中的各種動作,如跑步、跳躍和舉重等。視頻中的動作可能存在速度變化、遮擋和視角變化等問題。為了準(zhǔn)確識別這些動作,以下哪種技術(shù)是關(guān)鍵的?()A.對每一幀圖像進(jìn)行獨立的動作分類,然后綜合結(jié)果B.利用光流信息來捕捉視頻中的運動模式C.只關(guān)注視頻中的關(guān)鍵幀,忽略其他幀D.不考慮視頻的時序信息,將其視為一系列獨立的圖像11、在計算機視覺的發(fā)展中,模型的可解釋性是一個重要的研究方向。以下關(guān)于模型可解釋性的描述,不準(zhǔn)確的是()A.模型可解釋性旨在理解模型是如何做出決策和生成輸出的B.可解釋性對于建立用戶對模型的信任和確保模型的公正性具有重要意義C.一些可視化技術(shù),如特征圖可視化和類激活映射,可以幫助解釋模型的決策過程D.目前的計算機視覺模型都具有良好的可解釋性,能夠清晰地解釋其決策依據(jù)12、在計算機視覺的圖像生成任務(wù)中,假設(shè)要生成具有真實感的自然圖像。以下關(guān)于圖像生成方法的描述,正確的是:()A.生成對抗網(wǎng)絡(luò)(GAN)能夠生成逼真的圖像,但訓(xùn)練過程不穩(wěn)定,容易模式崩潰B.變分自編碼器(VAE)生成的圖像多樣性好,但真實感不如GAN生成的圖像C.自回歸模型在圖像生成中效率高,能夠快速生成高質(zhì)量的圖像D.所有的圖像生成方法都能夠生成與真實世界完全一致的圖像13、在計算機視覺的圖像語義分割任務(wù)中,假設(shè)要處理具有多尺度特征的圖像,例如同時包含大物體和小物體的場景。以下關(guān)于處理多尺度特征的方法描述,正確的是:()A.使用單一尺度的特征提取網(wǎng)絡(luò)可以應(yīng)對多尺度問題,通過調(diào)整網(wǎng)絡(luò)參數(shù)即可B.采用多尺度輸入圖像,分別進(jìn)行處理后再融合結(jié)果,能夠有效解決多尺度問題,但計算量大C.空洞卷積在處理多尺度特征時會引入大量的噪聲,降低分割精度D.圖像語義分割中多尺度問題無法解決,只能盡量避免處理這類圖像14、計算機視覺中的姿態(tài)估計是確定物體在三維空間中的位置和方向。假設(shè)要估計一個機器人手臂的姿態(tài),以下關(guān)于姿態(tài)估計方法的描述,哪一項是不正確的?()A.基于視覺的姿態(tài)估計可以通過分析物體在圖像中的特征點來計算其姿態(tài)B.可以結(jié)合多個攝像頭的圖像信息,提高姿態(tài)估計的精度和魯棒性C.姿態(tài)估計通常需要先對物體進(jìn)行建模,然后通過匹配圖像和模型來確定姿態(tài)D.姿態(tài)估計的結(jié)果總是非常準(zhǔn)確,不受圖像噪聲、遮擋和物體形狀變化的影響15、在計算機視覺的圖像配準(zhǔn)任務(wù)中,假設(shè)要將兩張拍攝角度和時間不同的同一物體的圖像進(jìn)行精確對齊。這兩張圖像可能存在縮放、旋轉(zhuǎn)和平移等差異。以下哪種配準(zhǔn)方法可能更適合處理這種情況?()A.基于特征點匹配的方法,如SIFT特征B.直接將兩張圖像疊加,不進(jìn)行任何配準(zhǔn)操作C.基于圖像灰度值的配準(zhǔn)方法,計算灰度差異D.隨機選擇圖像中的點進(jìn)行匹配二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述圖像復(fù)原的方法。2、(本題5分)解釋計算機視覺在標(biāo)準(zhǔn)化服務(wù)中的應(yīng)用。3、(本題5分)描述計算機視覺在山體滑坡監(jiān)測中的應(yīng)用。4、(本題5分)計算機視覺中如何進(jìn)行賽事裁判輔助?三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)對電影特效制作中的綠幕圖像進(jìn)行精確摳像處理。2、(本題5分)設(shè)計一個基于計算機視覺的簽名識別系統(tǒng)。3、(本題5分)使用計算機視覺方法,檢測停車場內(nèi)車輛的停放位置是否合規(guī)。4、(本題5分)開發(fā)一個能夠識別不同種類鼬科動物的程序。5、(本題5分)運用圖像分類技術(shù),對不同品種的花卉進(jìn)行分類。四、分析題(本大題共4個小題,共40分)1、(本題10分)分析某品牌的電商平臺節(jié)日促銷活動頁面設(shè)計,研究其在色彩、排版、商品推薦等方面如何營造節(jié)日氛圍,提高銷售額。2、(本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論