版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
圓知識(shí)體系復(fù)習(xí)2021/6/271本章知識(shí)結(jié)構(gòu)圖圓的基本性質(zhì)圓圓的對稱性弧、弦圓心角之間的關(guān)系同弧上的圓周角與圓心角的關(guān)系與圓有關(guān)的位置關(guān)系正多邊形和圓有關(guān)圓的計(jì)算點(diǎn)和圓的位置關(guān)系切線直線和圓的位置關(guān)系三角形的外接圓三角形內(nèi)切圓等分圓圓和圓的位置關(guān)系弧長扇形的面積圓錐的側(cè)面積和全面積2021/6/272一.圓的基本概念:1.圓的定義:到定點(diǎn)的距離等于定長的點(diǎn)的集合叫做圓.2.有關(guān)概念:(1)弦、直徑(圓中最長的弦)(2)弧、優(yōu)弧、劣弧、等弧(3)弦心距.O2021/6/273二.圓的基本性質(zhì)1.圓的對稱性:(1)圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸.圓有無數(shù)條對稱軸.(2)圓是中心對稱圖形,并且繞圓心旋轉(zhuǎn)任何一個(gè)角度都能與自身重合,即圓具有旋轉(zhuǎn)不變性..2021/6/2742.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧..ADBPC∵CD是圓O的直徑,CD⊥AB∴AP=BP,︵AC︵BC=︵AD︵BD=2021/6/2753.同圓或等圓中圓心角、弧、弦之間的關(guān)系:(1)在同圓或等圓中,如果圓心角相等,那么它所對的弧相等,所對的弦相等.(2)在圓中,如果弧相等,那么它所對的圓心角相等,所對的弦相等.(3)在一個(gè)圓中,如果弦相等,那么它所對的弧相等,所對的圓心角相等.ABDCO∵
∠COD=∠AOB︵AB︵CD=∴∴AB=CD2021/6/276例:如圖,P為⊙O的弦BA延長線上一點(diǎn),PA=AB=2,PO=5,求⊙O的半徑。輔助線關(guān)于弦的問題,常常需要過圓心作弦的垂線段,這是一條非常重要的輔助線。圓心到弦的距離、半徑、弦長構(gòu)成直角三角形,便將問題轉(zhuǎn)化為直角三角形的問題。MAPBOA2021/6/277
4.圓周角:定義:頂點(diǎn)在圓周上,兩邊和圓相交的角,叫做圓周角.性質(zhì):(1)在同一個(gè)圓中,同弧所對的圓周角等于它所對的圓心角的一半.∠BAC=∠BOC122021/6/278在同圓或等圓中,同弧或等弧所對的所有的圓周角相等.相等的圓周角所對的弧相等.圓周角的性質(zhì)(2)∵∠ADB與∠AEB、∠ACB是同弧所對的圓周角∴∠ADB=∠AEB=∠ACB2021/6/279性質(zhì)3:半圓或直徑所對的圓周角都相等,都等于900(直角).性質(zhì)4:900的圓周角所對的弦是圓的直徑.∵AB是⊙O的直徑∴∠ACB=900圓周角的性質(zhì):2021/6/2710(2)點(diǎn)在圓上(3)點(diǎn)在圓外(1)點(diǎn)在圓內(nèi)...1.點(diǎn)和圓的位置關(guān)系.ACB如果規(guī)定點(diǎn)與圓心的距離為d,圓的半徑為r,則d與r的大小關(guān)系為:點(diǎn)與圓的位置關(guān)系d與r的關(guān)系
點(diǎn)在圓內(nèi)點(diǎn)在圓上點(diǎn)在圓外d<rd=rd>r三.與圓有關(guān)的位置關(guān)系:2021/6/27112.直線和圓的位置關(guān)系:.O.O.Olll(1)相離:(2)相切:(3)相交:一條直線與一個(gè)圓沒有公共點(diǎn),叫做直線與這個(gè)圓相離.一條直線與一個(gè)圓只有一個(gè)公共點(diǎn),叫做直線與這個(gè)圓相切.一條直線與一個(gè)圓有兩個(gè)公共點(diǎn),叫做直線與這個(gè)圓相交.2021/6/2712.O.Ol(1)當(dāng)直線與圓相離時(shí)d>r;(2)當(dāng)直線與圓相切時(shí)d=r;(3)當(dāng)直線與圓相交時(shí)d<r.直線與圓位置關(guān)系的識(shí)別:∟drl∟dr.Ol∟dr設(shè)圓的半徑為r,圓心到直線的距離為d,則:2021/6/2713切線的識(shí)別方法1.與圓有一個(gè)公共點(diǎn)的直線。2.圓心到直線的距離等于圓的半徑的直線是圓的切線。3.經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線。.OA∟l∵OA是半徑,OA⊥l∴直線l是⊙O的切線.2021/6/2714切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑..∟.OAl∴OA⊥l∵直線l是⊙O的切線,切點(diǎn)為A2021/6/2715切線長定理:
從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等;這點(diǎn)與圓心的連線平分這兩條切線的夾角。BAPO...∵PA、PB為⊙O的切線∴PA=PB,∠APO=∠BPO2021/6/2716不在同一直線上的三點(diǎn)確定一個(gè)圓.O..C.B.A三角形的外接圓與內(nèi)切圓:三角形的外心就是三角形各邊垂直平分線的交點(diǎn)..OABC三角形的內(nèi)心就是三角形各角平分線的交點(diǎn).2021/6/2717等邊三角形的外心與內(nèi)心重合.特別的:內(nèi)切圓半徑與外接圓半徑的比是1:2.OABCD2021/6/2718經(jīng)過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,外接圓的圓心叫做三角形的外心,三角形叫做圓的內(nèi)接三角形。問題1:如何作三角形的外接圓?如何找三角形的外心?問題2:三角形的外心一定 在三角形內(nèi)嗎?∠C=90°▲ABC是銳角三角形▲ABC是鈍角三角形2021/6/2719基礎(chǔ)題:1.既有外接圓,又內(nèi)切圓的平行四邊形是______.2.直角三角形的外接圓半徑為5cm,內(nèi)切圓半徑為1cm,
則此三角形的周長是_______.3.⊙O邊長為2cm的正方形ABCD的內(nèi)切圓,E、F切⊙O
于P點(diǎn),交AB、BC于E、F,則△BEF的周長是_____.EFHG正方形22cm2cm2021/6/27204.如圖,⊙O為△ABC的內(nèi)切圓,切點(diǎn)分別為D,E,F(xiàn),P是弧FDE上的一點(diǎn),若∠A+∠C=110度,則∠FPE=_____度CoDEAB.FP5.如圖,已知△ABC的三邊長分別為AB=4cm,BC=5cm,AC=6cm,⊙O是△ABC的內(nèi)切圓,切點(diǎn)分別是E、F、G,則AE=
,BF=
,CG=
。2021/6/27217.如圖,⊙M與x
軸相交于點(diǎn)A(2,0),B(8,0),與y軸相切于點(diǎn)C,求圓心M的坐標(biāo)AO
y.MCxB2021/6/27226.小紅家的鍋蓋壞了,為了配一個(gè)鍋蓋,需要測量鍋蓋的直徑(鍋邊所形成的圓的直徑),而小紅家只有一把長20cm
的直尺,根本不夠長,怎么辦呢?小紅想了想,采取以下方法:首先把鍋平放到墻根,鍋邊剛好靠到兩墻,用直尺緊貼墻面量得MA的長,即可求出鍋蓋的直徑,請你利用圖乙,說明她這樣做的道理.2021/6/2723圓與圓的位置關(guān)系:.....外離外切相交內(nèi)切內(nèi)含2021/6/2724.O1.O2.O1.O2.O1.O2.O2.O1.O1.O2
兩圓的位置關(guān)系數(shù)量關(guān)系及識(shí)別方法
外離
外切
相交
內(nèi)切
內(nèi)含d>R+rd=R+rd=R-rd<R-rR-r<d<R+r2021/6/2725典型例題:1.如圖,⊙O的直徑AB=12,以O(shè)A為直徑的⊙O1交大圓的弦AC于D,過D點(diǎn)作小圓的切線交OC于點(diǎn)E,交AB于F.EO1ODCBAF(2)猜想DF與OC的位置關(guān)系,并說明理由.(1)說明D是AC的中點(diǎn).(3)若DF=4,求OF的長.2021/6/27262.如圖,正方形ABCD的邊長為2,P是線段BC上的一個(gè)動(dòng)點(diǎn).以AB為直徑作圓O,過點(diǎn)P作圓O的切線交AD于點(diǎn)F,切點(diǎn)為E.DCBAFP.O.E(1)求四邊形CDFP的周長.(2)設(shè)BP=x,AF=y,求y關(guān)于x的函數(shù)解析式.Q2021/6/2727三.正多邊形:2.半徑:正多邊形外接圓的半徑叫做這個(gè)正多邊形的半徑.1.中心:一個(gè)正多邊形外接圓的圓心叫做這個(gè)正多邊形的中心.3.中心角:正多邊形每一邊所對的外接圓的圓心角叫做這個(gè)正多邊形的中心角.4.邊心距:中心到正多邊形一邊的距離叫做這個(gè)正多邊形的邊心距.OABFDCEG2021/6/27283
正多邊形和圓(1).有關(guān)概念(2).常用的方法(3).正多邊形的作圖EFCD.邊心距r半徑R中心角O邊OABCRda2021/6/27291.圓的周長和面積公式2.弧長的計(jì)算公式3.扇形的面積公式S=360nπr2L=180nπr=12lrS或四.圓中的有關(guān)計(jì)算:周長C=2πr面積s=πr2.Or2021/6/27304.圓柱的展開圖:D B C A rhS側(cè)
=2πrhS全=2πrh+2π
r22021/6/27315.圓錐的展開圖:底面?zhèn)让鎍ahrS側(cè)
=πraS全=πra+π
r22021/6/2732例.如圖,圓錐的底面半徑為2cm,母線長為8cm,一只螞蟻從底面圓周上一點(diǎn)A出發(fā),沿圓錐側(cè)面爬行一周回到A點(diǎn),求螞蟻爬行的最短路線長是多少?BAOA’2021/6/2733E.CBAOD∟常見的基本圖形及結(jié)論:∟1.如圖,在以O(shè)為圓心的兩個(gè)同心圓中,大圓的弦AB交小圓于C、D,則:AC=BD若大圓的弦切小圓于C,則OACBAC=BC兩圓之間的環(huán)形面積.S=πAB22021/6/27342.如圖,以等腰△ABC的腰AB為直徑作⊙O交底邊BC于點(diǎn)D,則:OCBAD點(diǎn)D是BC的中點(diǎn).2021/6/2735O....PBADC3.如圖,已知PA、PB切圓O于點(diǎn)A,B,過弧AB上任一點(diǎn)E作圓O的切線,交PA,PB于點(diǎn)C,D,則:(1)△PCD的周長=2PA(2)∠COD=900-∠APBE2021/6/2736.OABC....OABC...DFEDFE4.如圖,△ABC各邊分別切圓O于點(diǎn)D、E、F.(1)∠DEF=900-∠A(3)S△ABC=(a+b+c)r(2)∠BOC=900+∠A2021/6/2737ABC.O...EFD5.在Rt△ABC中,∠ACB是直角,三邊分別是a、b、c,內(nèi)切圓半徑是r,則:內(nèi)切圓半徑r=a+b-c22021/6/27386.如圖,AB是圓O的直徑,AD,BC,DC均為切線,則:(1)DC=AD+BC(2)∠DOC=900OBDCAE2021/6/2739專題一:與圓有關(guān)的輔助線的作法:輔助線,莫亂添,規(guī)律方法記心間;圓半徑,不起眼,角的計(jì)算常要連,構(gòu)成等腰解疑難;切點(diǎn)和圓心,連結(jié)要領(lǐng)先;遇到直徑想直角,靈活應(yīng)用才方便。弦與弦心距,親密緊相連;2021
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年短視頻平臺(tái)與內(nèi)容創(chuàng)作者之間的合作協(xié)議
- 2024版三方入股合作協(xié)議書范本
- 浙江省初中學(xué)業(yè)水平考試模擬語文卷三套【附參考答案】
- 2024汽車租賃合同范文格式
- 2024年高端住宅底商返租合同
- 2024施工項(xiàng)目用重型挖掘機(jī)租賃合同3篇
- 2024年高速公路廣告投放權(quán)轉(zhuǎn)讓合同
- 1學(xué)會(huì)尊重 第二課時(shí) (說課稿) -2023-2024學(xué)年道德與法治六年級(jí)下冊統(tǒng)編版
- 2024物業(yè)保安服務(wù)外包規(guī)定合同
- 2024年魚種養(yǎng)殖技術(shù)引進(jìn)與購銷合作合同3篇
- 獾子油壓瘡護(hù)理
- 2025年中考語文備考之名著導(dǎo)讀:《水滸傳》主要人物梳理
- 中華人民共和國殘疾評定表
- 小學(xué)科學(xué)學(xué)情分析報(bào)告總結(jié)
- 2024年國考行測真題-言語理解與表達(dá)真題及完整答案1套
- 2024屆高考數(shù)學(xué)復(fù)習(xí) 立體幾何考情分析及備考策略
- 基于課程標(biāo)準(zhǔn)的學(xué)生創(chuàng)新素養(yǎng)培育的學(xué)科教學(xué)改進(jìn)研究課題申報(bào)評審書
- 醫(yī)療人員廉潔從業(yè)九項(xiàng)準(zhǔn)則
- 健康中國產(chǎn)業(yè)園規(guī)劃方案
- (2024年)二年級(jí)上冊音樂
- 2024屆高考英語一輪復(fù)習(xí)讀后續(xù)寫脫險(xiǎn)類續(xù)寫講義
評論
0/150
提交評論