江西省贛州市重點中學(xué)2025屆高三第二次模擬考試數(shù)學(xué)試卷含解析_第1頁
江西省贛州市重點中學(xué)2025屆高三第二次模擬考試數(shù)學(xué)試卷含解析_第2頁
江西省贛州市重點中學(xué)2025屆高三第二次模擬考試數(shù)學(xué)試卷含解析_第3頁
江西省贛州市重點中學(xué)2025屆高三第二次模擬考試數(shù)學(xué)試卷含解析_第4頁
江西省贛州市重點中學(xué)2025屆高三第二次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江西省贛州市重點中學(xué)2025屆高三第二次模擬考試數(shù)學(xué)試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則的值等于()A. B. C. D.2.已知實數(shù),則的大小關(guān)系是()A. B. C. D.3.在中,,,分別為角,,的對邊,若的面為,且,則()A.1 B. C. D.4.已知命題:是“直線和直線互相垂直”的充要條件;命題:對任意都有零點;則下列命題為真命題的是()A. B. C. D.5.在中,,分別為,的中點,為上的任一點,實數(shù),滿足,設(shè)、、、的面積分別為、、、,記(),則取到最大值時,的值為()A.-1 B.1 C. D.6.已知為虛數(shù)單位,若復(fù)數(shù)滿足,則()A. B. C. D.7.已知,,為圓上的動點,,過點作與垂直的直線交直線于點,若點的橫坐標為,則的取值范圍是()A. B. C. D.8.已知橢圓:的左、右焦點分別為,,點,在橢圓上,其中,,若,,則橢圓的離心率的取值范圍為()A. B.C. D.9.的展開式中有理項有()A.項 B.項 C.項 D.項10.若不等式對恒成立,則實數(shù)的取值范圍是()A. B. C. D.11.若各項均為正數(shù)的等比數(shù)列滿足,則公比()A.1 B.2 C.3 D.412.若不相等的非零實數(shù),,成等差數(shù)列,且,,成等比數(shù)列,則()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在處的切線的斜率為________.14.函數(shù)f(x)=x2﹣xlnx的圖象在x=1處的切線方程為_____.15.已知集合,,則_____________.16.已知F為拋物線C:x2=8y的焦點,P為C上一點,M(﹣4,3),則△PMF周長的最小值是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在銳角中,角A,B,C所對的邊分別為a,b,c.已知.(1)求的值;(2)當,且時,求的面積.18.(12分)某地在每周六的晚上8點到10點半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時刻亮燈的概率均為,并且是否亮燈彼此相互獨立.現(xiàn)統(tǒng)計了其中100盞燈在一場燈光展中亮燈的時長(單位:),得到下面的頻數(shù)表:亮燈時長/頻數(shù)1020402010以樣本中100盞燈的平均亮燈時長作為一盞燈的亮燈時長.(1)試估計的值;(2)設(shè)表示這10000盞燈在某一時刻亮燈的數(shù)目.①求的數(shù)學(xué)期望和方差;②若隨機變量滿足,則認為.假設(shè)當時,燈光展處于最佳燈光亮度.試由此估計,在一場燈光展中,處于最佳燈光亮度的時長(結(jié)果保留為整數(shù)).附:①某盞燈在某一時刻亮燈的概率等于亮燈時長與燈光展總時長的商;②若,則,,.19.(12分)在中,角A,B,C的對邊分別為a,b,c,且.(1)求B;(2)若的面積為,周長為8,求b.20.(12分)在中,.(Ⅰ)求角的大小;(Ⅱ)若,,求的值.21.(12分)已知分別是的內(nèi)角的對邊,且.(Ⅰ)求.(Ⅱ)若,,求的面積.(Ⅲ)在(Ⅱ)的條件下,求的值.22.(10分)已知函數(shù).(Ⅰ)當時,求不等式的解集;(Ⅱ)若存在滿足不等式,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由余弦公式的二倍角可得,,再由誘導(dǎo)公式有,所以【詳解】∵∴由余弦公式的二倍角展開式有又∵∴故選:A【點睛】本題考查了學(xué)生對二倍角公式的應(yīng)用,要求學(xué)生熟練掌握三角函數(shù)中的誘導(dǎo)公式,屬于簡單題2、B【解析】

根據(jù),利用指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性即可得出.【詳解】解:∵,∴,,.∴.故選:B.【點睛】本題考查了指數(shù)函數(shù)對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.3、D【解析】

根據(jù)三角形的面積公式以及余弦定理進行化簡求出的值,然后利用兩角和差的正弦公式進行求解即可.【詳解】解:由,得,∵,∴,即即,則,∵,∴,∴,即,則,故選D.【點睛】本題主要考查解三角形的應(yīng)用,結(jié)合三角形的面積公式以及余弦定理求出的值以及利用兩角和差的正弦公式進行計算是解決本題的關(guān)鍵.4、A【解析】

先分別判斷每一個命題的真假,再利用復(fù)合命題的真假判斷確定答案即可.【詳解】當時,直線和直線,即直線為和直線互相垂直,所以“”是直線和直線互相垂直“的充分條件,當直線和直線互相垂直時,,解得.所以“”是直線和直線互相垂直“的不必要條件.:“”是直線和直線互相垂直“的充分不必要條件,故是假命題.當時,沒有零點,所以命題是假命題.所以是真命題,是假命題,是假命題,是假命題.故選:.【點睛】本題主要考查充要條件的判斷和兩直線的位置關(guān)系,考查二次函數(shù)的圖象,考查學(xué)生對這些知識的理解掌握水平.5、D【解析】

根據(jù)三角形中位線的性質(zhì),可得到的距離等于△的邊上高的一半,從而得到,由此結(jié)合基本不等式求最值,得到當取到最大值時,為的中點,再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結(jié)果.【詳解】如圖所示:因為是△的中位線,所以到的距離等于△的邊上高的一半,所以,由此可得,當且僅當時,即為的中點時,等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D【點睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應(yīng)用,考查了基本不等式求最值,屬于中檔題.6、A【解析】分析:題設(shè)中復(fù)數(shù)滿足的等式可以化為,利用復(fù)數(shù)的四則運算可以求出.詳解:由題設(shè)有,故,故選A.點睛:本題考查復(fù)數(shù)的四則運算和復(fù)數(shù)概念中的共軛復(fù)數(shù),屬于基礎(chǔ)題.7、A【解析】

由題意得,即可得點M的軌跡為以A,B為左、右焦點,的雙曲線,根據(jù)雙曲線的性質(zhì)即可得解.【詳解】如圖,連接OP,AM,由題意得,點M的軌跡為以A,B為左、右焦點,的雙曲線,.故選:A.【點睛】本題考查了雙曲線定義的應(yīng)用,考查了轉(zhuǎn)化化歸思想,屬于中檔題.8、C【解析】

根據(jù)可得四邊形為矩形,設(shè),,根據(jù)橢圓的定義以及勾股定理可得,再分析的取值范圍,進而求得再求離心率的范圍即可.【詳解】設(shè),,由,,知,因為,在橢圓上,,所以四邊形為矩形,;由,可得,由橢圓的定義可得,①,平方相減可得②,由①②得;令,令,所以,即,所以,所以,所以,解得.故選:C【點睛】本題主要考查了橢圓的定義運用以及構(gòu)造齊次式求橢圓的離心率的問題,屬于中檔題.9、B【解析】

由二項展開式定理求出通項,求出的指數(shù)為整數(shù)時的個數(shù),即可求解.【詳解】,,當,,,時,為有理項,共項.故選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關(guān)鍵,屬于基礎(chǔ)題.10、B【解析】

轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,求函數(shù)最值,即得解.【詳解】由,可知.設(shè),則,所以函數(shù)在上單調(diào)遞增,所以.所以.故的取值范圍是.故選:B【點睛】本題考查了導(dǎo)數(shù)在恒成立問題中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.11、C【解析】

由正項等比數(shù)列滿足,即,又,即,運算即可得解.【詳解】解:因為,所以,又,所以,又,解得.故選:C.【點睛】本題考查了等比數(shù)列基本量的求法,屬基礎(chǔ)題.12、A【解析】

由題意,可得,,消去得,可得,繼而得到,代入即得解【詳解】由,,成等差數(shù)列,所以,又,,成等比數(shù)列,所以,消去得,所以,解得或,因為,,是不相等的非零實數(shù),所以,此時,所以.故選:A【點睛】本題考查了等差等比數(shù)列的綜合應(yīng)用,考查了學(xué)生概念理解,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義令,即可求出切線斜率.【詳解】,,,即曲線在處的切線的斜率.故答案為:【點睛】本題考查了導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)的運算法則以及基本初等函數(shù)的導(dǎo)數(shù),屬于基礎(chǔ)題.14、x﹣y=0.【解析】

先將x=1代入函數(shù)式求出切點縱坐標,然后對函數(shù)求導(dǎo)數(shù),進一步求出切線斜率,最后利用點斜式寫出切線方程.【詳解】由題意得.故切線方程為y﹣1=x﹣1,即x﹣y=0.故答案為:x﹣y=0.【點睛】本題考查利用導(dǎo)數(shù)求切線方程的基本方法,利用切點滿足的條件列方程(組)是關(guān)鍵.同時也考查了學(xué)生的運算能力,屬于基礎(chǔ)題.15、【解析】

由集合和集合求出交集即可.【詳解】解:集合,,.故答案為:.【點睛】本題考查了交集及其運算,屬于基礎(chǔ)題.16、5【解析】

△PMF的周長最小,即求最小,過做拋物線準線的垂線,垂足為,轉(zhuǎn)化為求最小,數(shù)形結(jié)合即可求解.【詳解】如圖,F(xiàn)為拋物線C:x2=8y的焦點,P為C上一點,M(﹣4,3),拋物線C:x2=8y的焦點為F(0,2),準線方程為y=﹣2.過作準線的垂線,垂足為,則有,當且僅當三點共線時,等號成立,所以△PMF的周長最小值為55.故答案為:5.【點睛】本題考查拋物線定義的應(yīng)用,考查數(shù)形結(jié)合與數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)利用二倍角公式求解即可,注意隱含條件.(2)利用(1)中的結(jié)論,結(jié)合正弦定理和同角三角函數(shù)的關(guān)系易得的值,又由求出的值,最后由正弦定理求出的值,根據(jù)三角形的面積公式即可計算得出.【詳解】(1)由已知可得,所以,因為在銳角中,,所以(2)因為,所以,因為是銳角三角形,所以,所以.由正弦定理可得:,所以,所以【點睛】此類問題是高考的常考題型,主要考查了正弦定理、三角函數(shù)以及三角恒等變換等知識,同時考查了學(xué)生的基本運算能力和利用三角公式進行恒等變換的技能,屬于中檔題.18、(1)(2)①,,②72【解析】

(1)將每組數(shù)據(jù)的組中值乘以對應(yīng)的頻率,然后再將結(jié)果相加即可得到亮燈時長的平均數(shù),將此平均數(shù)除以(個小時),即可得到的估計值;(2)①利用二項分布的均值與方差的計算公式進行求解;②先根據(jù)條件計算出的取值范圍,然后根據(jù)并結(jié)合正態(tài)分布概率的對稱性,求解出在滿足取值范圍下對應(yīng)的概率.【詳解】(1)平均時間為(分鐘)∴(2)①∵,∴,②∵,,∴∵,,∴∴即最佳時間長度為72分鐘.【點睛】本題考查根據(jù)頻數(shù)分布表求解平均數(shù)、幾何概型(長度模型)、二項分布的均值與方差、正態(tài)分布的概率計算,屬于綜合性問題,難度一般.(1)如果,則;(2)計算正態(tài)分布中的概率,一定要活用正態(tài)分布圖象的對稱性對應(yīng)概率的對稱性.19、(1);(2)【解析】

(1)通過正弦定理和內(nèi)角和定理化簡,再通過二倍角公式即可求出;(2)通過三角形面積公式和三角形的周長為8,求出b的表達式后即可求出b的值.【詳解】(1)由三角形內(nèi)角和定理及誘導(dǎo)公式,得,結(jié)合正弦定理,得,由及二倍角公式,得,即,故;(2)由題設(shè),得,從而,由余弦定理,得,即,又,所以,解得.【點睛】本題綜合考查了正余弦定理,倍角公式,三角形面積公式,屬于基礎(chǔ)題.20、(1);(2).【解析】試題分析:(1)由正弦定理得到.消去公因式得到所以.進而得到角A;(2)結(jié)合三角形的面積公式,和余弦定理得到,聯(lián)立兩式得到.解析:(I)因為,所以,由正弦定理,得.又因為,,所以.又因為,所以.(II)由,得,由余弦定理,得,即,因為,解得.因為,所以.21、(Ⅰ);(Ⅱ);(Ⅲ).【解析】

(Ⅰ)由已知結(jié)合正弦定理先進行代換,然后結(jié)合和差角公式及正弦定理可求;(Ⅱ)由余弦定理可求,然后結(jié)合三角形的面積公式可求;(Ⅲ)結(jié)合二倍角公式及和角余弦公式即可求解.【詳解】(Ⅰ)因為,所以,所以,由正弦定理可得,;(Ⅱ)由余弦定理可得,,整理可得,,解可得,,因為,所以;(Ⅲ)由于,.所以.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論