2025屆海東市重點(diǎn)中學(xué)高三第六次模擬考試數(shù)學(xué)試卷含解析_第1頁
2025屆海東市重點(diǎn)中學(xué)高三第六次模擬考試數(shù)學(xué)試卷含解析_第2頁
2025屆海東市重點(diǎn)中學(xué)高三第六次模擬考試數(shù)學(xué)試卷含解析_第3頁
2025屆海東市重點(diǎn)中學(xué)高三第六次模擬考試數(shù)學(xué)試卷含解析_第4頁
2025屆海東市重點(diǎn)中學(xué)高三第六次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆海東市重點(diǎn)中學(xué)高三第六次模擬考試數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線(,)的左、右頂點(diǎn)分別為,,虛軸的兩個(gè)端點(diǎn)分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.2.若實(shí)數(shù)滿足不等式組則的最小值等于()A. B. C. D.3.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統(tǒng)民間藝術(shù)之一,它歷史悠久,風(fēng)格獨(dú)特,神獸人們喜愛.下圖即是一副窗花,是把一個(gè)邊長為12的大正方形在四個(gè)角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個(gè)角處再剪出邊長全為1的一些小正方形.若在這個(gè)窗花內(nèi)部隨機(jī)取一個(gè)點(diǎn),則該點(diǎn)不落在任何一個(gè)小正方形內(nèi)的概率是()A. B. C. D.4.執(zhí)行如圖所示的程序框圖,則輸出的()A.2 B.3 C. D.5.若復(fù)數(shù)z滿足,則()A. B. C. D.6.平行四邊形中,已知,,點(diǎn)、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.7.已知函數(shù),其中表示不超過的最大正整數(shù),則下列結(jié)論正確的是()A.的值域是 B.是奇函數(shù)C.是周期函數(shù) D.是增函數(shù)8.若x,y滿足約束條件的取值范圍是A.[0,6] B.[0,4] C.[6, D.[4,9.已知是圓心為坐標(biāo)原點(diǎn),半徑為1的圓上的任意一點(diǎn),將射線繞點(diǎn)逆時(shí)針旋轉(zhuǎn)到交圓于點(diǎn),則的最大值為()A.3 B.2 C. D.10.設(shè),滿足,則的取值范圍是()A. B. C. D.11.復(fù)數(shù)滿足(為虛數(shù)單位),則的值是()A. B. C. D.12.記為數(shù)列的前項(xiàng)和數(shù)列對任意的滿足.若,則當(dāng)取最小值時(shí),等于()A.6 B.7 C.8 D.9二、填空題:本題共4小題,每小題5分,共20分。13.在矩形ABCD中,,,點(diǎn)E,F(xiàn)分別為BC,CD邊上動(dòng)點(diǎn),且滿足,則的最大值為________.14.動(dòng)點(diǎn)到直線的距離和他到點(diǎn)距離相等,直線過且交點(diǎn)的軌跡于兩點(diǎn),則以為直徑的圓必過_________.15.已知平行于軸的直線與雙曲線:的兩條漸近線分別交于,兩點(diǎn),為坐標(biāo)原點(diǎn),若為等邊三角形,則雙曲線的離心率為______.16.已知橢圓的左、右焦點(diǎn)分別為、,過橢圓的右焦點(diǎn)作一條直線交橢圓于點(diǎn)、.則內(nèi)切圓面積的最大值是_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),其中.(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè),求證:;(Ⅲ)若對于恒成立,求的最大值.18.(12分)某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對該校名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評價(jià)為“鍛煉達(dá)標(biāo)”.(1)請根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表:并通過計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出人,進(jìn)行體育鍛煉體會(huì)交流.(i)求這人中,男生、女生各有多少人?(ii)從參加體會(huì)交流的人中,隨機(jī)選出人發(fā)言,記這人中女生的人數(shù)為,求的分布列和數(shù)學(xué)期望.參考公式:,其中.臨界值表:0.100.050.0250.01002.7063.8415.0246.63519.(12分)已知在中,角,,的對邊分別為,,,且.(1)求的值;(2)若,求面積的最大值.20.(12分)設(shè)數(shù)列是等比數(shù)列,,已知,(1)求數(shù)列的首項(xiàng)和公比;(2)求數(shù)列的通項(xiàng)公式.21.(12分)在ABC中,角A,B,C的對邊分別為a,b,c,已知,(Ⅰ)求的大??;(Ⅱ)若,求面積的最大值.22.(10分)一年之計(jì)在于春,一日之計(jì)在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對一塊地的個(gè)坑進(jìn)行播種,每個(gè)坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨(dú)立.對每一個(gè)坑而言,如果至少有兩粒種子發(fā)芽,則不需要進(jìn)行補(bǔ)播種,否則要補(bǔ)播種.(1)當(dāng)取何值時(shí),有3個(gè)坑要補(bǔ)播種的概率最大?最大概率為多少?(2)當(dāng)時(shí),用表示要補(bǔ)播種的坑的個(gè)數(shù),求的分布列與數(shù)學(xué)期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

根據(jù)題意畫出幾何關(guān)系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關(guān)系求得與等量關(guān)系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫出幾何關(guān)系如下圖所示:設(shè)四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故焦距的最小值為.故選:D【點(diǎn)睛】本題考查了雙曲線的定義及其性質(zhì)的簡單應(yīng)用,圓錐曲線與基本不等式綜合應(yīng)用,屬于中檔題.2、A【解析】

首先畫出可行域,利用目標(biāo)函數(shù)的幾何意義求的最小值.【詳解】解:作出實(shí)數(shù),滿足不等式組表示的平面區(qū)域(如圖示:陰影部分)由得,由得,平移,易知過點(diǎn)時(shí)直線在上截距最小,所以.故選:A.【點(diǎn)睛】本題考查了簡單線性規(guī)劃問題,求目標(biāo)函數(shù)的最值先畫出可行域,利用幾何意義求值,屬于中檔題.3、D【解析】

由幾何概型可知,概率應(yīng)為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D【點(diǎn)睛】本題考查幾何概型的面積公式的應(yīng)用,屬于基礎(chǔ)題.4、B【解析】

運(yùn)行程序,依次進(jìn)行循環(huán),結(jié)合判斷框,可得輸出值.【詳解】起始階段有,,第一次循環(huán)后,,第二次循環(huán)后,,第三次循環(huán)后,,第四次循環(huán)后,,所有后面的循環(huán)具有周期性,周期為3,當(dāng)時(shí),再次循環(huán)輸出的,,此時(shí),循環(huán)結(jié)束,輸出,故選:B【點(diǎn)睛】本題主要考查程序框圖的相關(guān)知識(shí),經(jīng)過幾次循環(huán)找出規(guī)律是關(guān)鍵,屬于基礎(chǔ)題型.5、D【解析】

先化簡得再求得解.【詳解】所以.故選:D【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算和模的計(jì)算,意在考查學(xué)生對這些知識(shí)的理解掌握水平.6、C【解析】

將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點(diǎn)睛】本題考查向量的幾何意義,考查向量的線性運(yùn)算,將用向量和表示是關(guān)鍵,是基礎(chǔ)題.7、C【解析】

根據(jù)表示不超過的最大正整數(shù),可構(gòu)建函數(shù)圖象,即可分別判斷值域、奇偶性、周期性、單調(diào)性,進(jìn)而下結(jié)論.【詳解】由表示不超過的最大正整數(shù),其函數(shù)圖象為選項(xiàng)A,函數(shù),故錯(cuò)誤;選項(xiàng)B,函數(shù)為非奇非偶函數(shù),故錯(cuò)誤;選項(xiàng)C,函數(shù)是以1為周期的周期函數(shù),故正確;選項(xiàng)D,函數(shù)在區(qū)間上是增函數(shù),但在整個(gè)定義域范圍上不具備單調(diào)性,故錯(cuò)誤.故選:C【點(diǎn)睛】本題考查對題干的理解,屬于函數(shù)新定義問題,可作出圖象分析性質(zhì),屬于較難題.8、D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標(biāo)函數(shù)z=x+2y經(jīng)過C點(diǎn)時(shí),函數(shù)取得最小值,由解得C(2,1),目標(biāo)函數(shù)的最小值為:4目標(biāo)函數(shù)的范圍是[4,+∞).故選D.9、C【解析】

設(shè)射線OA與x軸正向所成的角為,由三角函數(shù)的定義得,,,利用輔助角公式計(jì)算即可.【詳解】設(shè)射線OA與x軸正向所成的角為,由已知,,,所以,當(dāng)時(shí),取得等號(hào).故選:C.【點(diǎn)睛】本題考查正弦型函數(shù)的最值問題,涉及到三角函數(shù)的定義、輔助角公式等知識(shí),是一道容易題.10、C【解析】

首先繪制出可行域,再繪制出目標(biāo)函數(shù),根據(jù)可行域范圍求出目標(biāo)函數(shù)中的取值范圍.【詳解】由題知,滿足,可行域如下圖所示,可知目標(biāo)函數(shù)在點(diǎn)處取得最小值,故目標(biāo)函數(shù)的最小值為,故的取值范圍是.故選:D.【點(diǎn)睛】本題主要考查了線性規(guī)劃中目標(biāo)函數(shù)的取值范圍的問題,屬于基礎(chǔ)題.11、C【解析】

直接利用復(fù)數(shù)的除法的運(yùn)算法則化簡求解即可.【詳解】由得:本題正確選項(xiàng):【點(diǎn)睛】本題考查復(fù)數(shù)的除法的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.12、A【解析】

先令,找出的關(guān)系,再令,得到的關(guān)系,從而可求出,然后令,可得,得出數(shù)列為等差數(shù)列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對任意的,所以是等差數(shù)列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當(dāng)時(shí),取最小值.故選:A【點(diǎn)睛】此題考查的是由數(shù)列的遞推式求數(shù)列的通項(xiàng),采用了賦值法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用平面直角坐標(biāo)系,設(shè)出點(diǎn)E,F(xiàn)的坐標(biāo),由可得,利用數(shù)量積運(yùn)算求得,再利用線性規(guī)劃的知識(shí)求出的最大值.【詳解】建立平面直角坐標(biāo)系,如圖(1)所示:設(shè),,,即,又,令,其中,畫出圖形,如圖(2)所示:當(dāng)直線經(jīng)過點(diǎn)時(shí),取得最大值.故答案為:【點(diǎn)睛】本題考查了向量數(shù)量積的坐標(biāo)運(yùn)算、簡單的線性規(guī)劃問題,解題的關(guān)鍵是建立恰當(dāng)?shù)淖鴺?biāo)系,屬于基礎(chǔ)題.14、【解析】

利用動(dòng)點(diǎn)到直線的距離和他到點(diǎn)距離相等,,可知?jiǎng)狱c(diǎn)的軌跡是以為焦點(diǎn)的拋物線,從而可求曲線的方程,將,代入,利用韋達(dá)定理,可得,從而可知以為直徑的圓經(jīng)過原點(diǎn)O.【詳解】設(shè)點(diǎn),由題意可得,,,可得,設(shè)直線的方程為,代入拋物線可得,,,,以AB為直徑的圓經(jīng)過原點(diǎn).故答案為:(0,0)【點(diǎn)睛】本題考查了拋物線的定義,考查了直線和拋物線的交匯問題,同時(shí)考查了方程的思想和韋達(dá)定理,考查了運(yùn)算能力,屬于中檔題.15、2【解析】

根據(jù)為等邊三角形建立的關(guān)系式,從而可求離心率.【詳解】據(jù)題設(shè)分析知,,所以,得,所以雙曲線的離心率.【點(diǎn)睛】本題主要考查雙曲線的離心率的求解,根據(jù)條件建立之間的關(guān)系式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).16、【解析】令直線:,與橢圓方程聯(lián)立消去得,可設(shè),則,.可知,又,故.三角形周長與三角形內(nèi)切圓的半徑的積是三角形面積的二倍,則內(nèi)切圓半徑,其面積最大值為.故本題應(yīng)填.點(diǎn)睛:圓錐曲線中最值與范圍的求法有兩種:(1)幾何法:若題目的條件和結(jié)論能明顯體現(xiàn)幾何特征及意義,則考慮利用圖形性質(zhì)來解決,這就是幾何法.(2)代數(shù)法:若題目的條件和結(jié)論能體現(xiàn)一種明確的函數(shù),則可首先建立起目標(biāo)函數(shù),再求這個(gè)函數(shù)的最值,求函數(shù)最值的常用方法有配方法,判別式法,重要不等式及函數(shù)的單調(diào)性法等.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(Ⅱ)證明見解析;(Ⅲ).【解析】

(Ⅰ)利用二次求導(dǎo)可得,所以在上為增函數(shù),進(jìn)而可得函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(Ⅱ)利用導(dǎo)數(shù)可得在區(qū)間上存在唯一零點(diǎn),所以函數(shù)在遞減,在,遞增,則,進(jìn)而可證;(Ⅲ)條件等價(jià)于對于恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)可得的單調(diào)性,即可得到的最小值為,再次構(gòu)造函數(shù)(a),,利用導(dǎo)數(shù)得其單調(diào)區(qū)間,進(jìn)而求得最大值.【詳解】(Ⅰ)當(dāng)時(shí),,則,所以,又因?yàn)?,所以在上為增函?shù),因?yàn)?,所以?dāng)時(shí),,為增函數(shù),當(dāng)時(shí),,為減函數(shù),即函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為;(Ⅱ),則令,則(1),,所以在區(qū)間上存在唯一零點(diǎn),設(shè)零點(diǎn)為,則,且,當(dāng)時(shí),,當(dāng),,,所以函數(shù)在遞減,在,遞增,,由,得,所以,由于,,從而;(Ⅲ)因?yàn)閷τ诤愠闪?,即對于恒成立,不妨令,因?yàn)?,,所以的解為,則當(dāng)時(shí),,為增函數(shù),當(dāng)時(shí),,為減函數(shù),所以的最小值為,則,不妨令(a),,則(a),解得,所以當(dāng)時(shí),(a),(a)為增函數(shù),當(dāng)時(shí),(a),(a)為減函數(shù),所以(a)的最大值為,則的最大值為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,以及函數(shù)不等式恒成立問題的解法,意在考查學(xué)生等價(jià)轉(zhuǎn)化思想和數(shù)學(xué)運(yùn)算能力,屬于較難題.18、(1)能;(2)(i)男生有人,女生有人;(ii),分布列見解析.【解析】

(1)根據(jù)所給數(shù)據(jù)可完成列聯(lián)表.由總?cè)藬?shù)及女生人數(shù)得男生人數(shù),由表格得達(dá)標(biāo)人數(shù),從而得男生中達(dá)標(biāo)人數(shù),這樣不達(dá)標(biāo)人數(shù)隨之而得,然后計(jì)算可得結(jié)論;(2)由達(dá)標(biāo)人數(shù)中男女生人數(shù)比為可得抽取的人數(shù),總共選2人,女生有4人,的可能值為0,1,2,分別計(jì)算概率得分布列,再由期望公式可計(jì)算出期望.【詳解】(1)列出列聯(lián)表,,所以在犯錯(cuò)誤的概率不超過的前提下能判斷“課外體育達(dá)標(biāo)”與性別有關(guān).(2)(i)在“鍛煉達(dá)標(biāo)”的學(xué)生中,男女生人數(shù)比為,用分層抽樣方法抽出人,男生有人,女生有人.(ii)從參加體會(huì)交流的人中,隨機(jī)選出人發(fā)言,人中女生的人數(shù)為,則的可能值為,,,則,,,可得的分布列為:可得數(shù)學(xué)期望.【點(diǎn)睛】本題考查列聯(lián)表與獨(dú)立性檢驗(yàn),考查分層抽樣,隨機(jī)變量的概率分布列和期望.主要考查學(xué)生的數(shù)據(jù)處理能力,運(yùn)算求解能力,屬于中檔題.19、(1);(2).【解析】分析:(1)在式子中運(yùn)用正弦、余弦定理后可得.(2)由經(jīng)三角變換可得,然后運(yùn)用余弦定理可得,從而得到,故得.詳解:(1)由題意及正、余弦定理得,整理得,∴(2)由題意得,∴,∵,∴,∴.由余弦定理得,∴,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.∴.∴面積的最大值為.點(diǎn)睛:(1)正、余弦定理經(jīng)常與三角形的面積綜合在一起考查,解題時(shí)要注意整體代換的應(yīng)用,如余弦定理中常用的變形,這樣自然地與三角形的面積公式結(jié)合在一起.(2)運(yùn)用基本不等式求最值時(shí),要注意等號(hào)成立的條件,在解題中必須要注明.20、(1)(2)【解析】

本題主要考查了等比數(shù)列的通項(xiàng)公式的求解,數(shù)列求和的錯(cuò)位相減求和是數(shù)列求和中的重點(diǎn)與難點(diǎn),要注意掌握.(1)設(shè)等比數(shù)列{an}的公比為q,則q+q2=6,解方程可求q(2)由(1)可求an=a1?qn-1=2n-1,結(jié)合數(shù)列的特點(diǎn),考慮利用錯(cuò)位相減可求數(shù)列的和解:(1)(2),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論