昆明幼兒師范高等專科學(xué)?!禨PSS原理及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
昆明幼兒師范高等專科學(xué)?!禨PSS原理及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
昆明幼兒師范高等??茖W(xué)校《SPSS原理及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
昆明幼兒師范高等??茖W(xué)?!禨PSS原理及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
昆明幼兒師范高等??茖W(xué)?!禨PSS原理及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

裝訂線裝訂線PAGE2第1頁(yè),共3頁(yè)昆明幼兒師范高等專科學(xué)?!禨PSS原理及應(yīng)用》

2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在構(gòu)建數(shù)據(jù)分析模型時(shí),特征工程起著關(guān)鍵作用。假設(shè)我們正在構(gòu)建一個(gè)預(yù)測(cè)房?jī)r(jià)的模型,擁有房屋面積、房間數(shù)量、地理位置等原始數(shù)據(jù)。以下哪種特征工程方法可能有助于提高模型的性能?()A.對(duì)數(shù)值型特征進(jìn)行標(biāo)準(zhǔn)化處理B.忽略地理位置特征,因?yàn)樗y以量化C.直接使用原始數(shù)據(jù),不進(jìn)行任何處理D.將所有特征組合成一個(gè)綜合特征2、數(shù)據(jù)可視化是數(shù)據(jù)分析的重要手段之一。以下關(guān)于數(shù)據(jù)可視化的作用,不準(zhǔn)確的是()A.數(shù)據(jù)可視化能夠?qū)?fù)雜的數(shù)據(jù)以直觀、易懂的圖形和圖表形式呈現(xiàn),幫助人們快速理解數(shù)據(jù)的含義和趨勢(shì)B.通過(guò)數(shù)據(jù)可視化,可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式、異常值和關(guān)系,為進(jìn)一步的分析提供線索C.數(shù)據(jù)可視化只是為了讓數(shù)據(jù)看起來(lái)更美觀,對(duì)于數(shù)據(jù)分析的實(shí)質(zhì)內(nèi)容沒(méi)有太大幫助D.好的數(shù)據(jù)可視化能夠有效地傳達(dá)信息,支持決策制定,并與他人分享分析結(jié)果3、在進(jìn)行數(shù)據(jù)分析以評(píng)估一個(gè)新的市場(chǎng)營(yíng)銷活動(dòng)的效果時(shí),比如分析活動(dòng)前后的客戶流量、購(gòu)買轉(zhuǎn)化率和客戶滿意度等指標(biāo)的變化。由于活動(dòng)期間可能受到其他外部因素的干擾,為了準(zhǔn)確評(píng)估活動(dòng)的貢獻(xiàn),以下哪種方法可能是合適的?()A.建立對(duì)照組進(jìn)行對(duì)比B.只關(guān)注活動(dòng)期間的數(shù)據(jù)C.忽略外部因素的影響D.憑經(jīng)驗(yàn)主觀判斷4、在構(gòu)建數(shù)據(jù)分析模型時(shí),過(guò)擬合是一個(gè)常見(jiàn)的問(wèn)題。假設(shè)一個(gè)模型在訓(xùn)練集上表現(xiàn)非常好,但在測(cè)試集上表現(xiàn)很差,這可能表明發(fā)生了什么?()A.模型過(guò)于簡(jiǎn)單,無(wú)法捕捉數(shù)據(jù)中的復(fù)雜模式B.模型過(guò)于復(fù)雜,對(duì)訓(xùn)練數(shù)據(jù)過(guò)度擬合C.數(shù)據(jù)中存在噪聲,影響了模型的性能D.測(cè)試集的數(shù)據(jù)質(zhì)量有問(wèn)題5、進(jìn)行數(shù)據(jù)分析時(shí),需要對(duì)數(shù)據(jù)進(jìn)行分類。以下關(guān)于分類算法的描述,錯(cuò)誤的是:()A.決策樹(shù)算法易于理解和解釋B.支持向量機(jī)在處理高維數(shù)據(jù)時(shí)表現(xiàn)出色C.K近鄰算法對(duì)異常值不敏感D.樸素貝葉斯算法假設(shè)各個(gè)特征之間相互獨(dú)立6、在數(shù)據(jù)分析的聚類分析中,假設(shè)要將一組客戶根據(jù)其消費(fèi)行為和偏好進(jìn)行分組??蛻魯?shù)據(jù)包括購(gòu)買歷史、瀏覽記錄和評(píng)價(jià)等多維度信息。為了得到有意義且區(qū)分度高的聚類結(jié)果,以下哪種聚類算法可能表現(xiàn)更優(yōu)?()A.K-Means聚類,基于距離進(jìn)行分組B.層次聚類,構(gòu)建層次結(jié)構(gòu)C.密度聚類,基于數(shù)據(jù)的密度分布D.隨機(jī)將客戶分配到不同的組7、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的設(shè)計(jì)應(yīng)遵循一定的原則。以下關(guān)于數(shù)據(jù)可視化設(shè)計(jì)原則的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)可視化的設(shè)計(jì)應(yīng)簡(jiǎn)潔明了,避免過(guò)多的裝飾和復(fù)雜的圖表類型B.數(shù)據(jù)可視化的設(shè)計(jì)應(yīng)突出重點(diǎn),讓讀者能夠快速抓住關(guān)鍵信息C.數(shù)據(jù)可視化的設(shè)計(jì)應(yīng)具有交互性,讓讀者能夠自主探索數(shù)據(jù)D.數(shù)據(jù)可視化的設(shè)計(jì)可以隨意發(fā)揮,不需要考慮讀者的需求和認(rèn)知水平8、在數(shù)據(jù)分析中,選擇合適的數(shù)據(jù)分析方法至關(guān)重要。關(guān)于描述性統(tǒng)計(jì)分析和推斷性統(tǒng)計(jì)分析,以下敘述不正確的是()A.描述性統(tǒng)計(jì)分析主要用于對(duì)數(shù)據(jù)的集中趨勢(shì)、離散程度和分布形態(tài)進(jìn)行描述和總結(jié)B.推斷性統(tǒng)計(jì)分析則是基于樣本數(shù)據(jù)對(duì)總體特征進(jìn)行估計(jì)和假設(shè)檢驗(yàn)C.描述性統(tǒng)計(jì)分析只能提供數(shù)據(jù)的基本信息,對(duì)于深入了解數(shù)據(jù)的內(nèi)在規(guī)律和關(guān)系作用有限D(zhuǎn).在實(shí)際應(yīng)用中,通常先進(jìn)行描述性統(tǒng)計(jì)分析,然后根據(jù)研究目的和數(shù)據(jù)特點(diǎn)選擇是否進(jìn)行推斷性統(tǒng)計(jì)分析9、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析時(shí),需要找出不同變量之間的關(guān)系。假設(shè)要分析消費(fèi)者的購(gòu)買行為與廣告投放之間的關(guān)聯(lián),數(shù)據(jù)量龐大且變量眾多。以下哪種關(guān)聯(lián)分析方法在處理這種復(fù)雜的商業(yè)數(shù)據(jù)時(shí)更能發(fā)現(xiàn)有價(jià)值的關(guān)聯(lián)規(guī)則?()A.Apriori算法B.FP-Growth算法C.Eclat算法D.以上算法效果相同10、當(dāng)分析一個(gè)移動(dòng)應(yīng)用的用戶使用數(shù)據(jù),比如使用頻率、功能使用情況、用戶留存率等,以改進(jìn)應(yīng)用的功能和用戶體驗(yàn)。為了增加用戶留存率,以下哪種策略可能是有效的?()A.推出新的功能B.優(yōu)化應(yīng)用的界面設(shè)計(jì)C.加強(qiáng)用戶互動(dòng)和社交元素D.以上都是11、數(shù)據(jù)分析中的異常檢測(cè)用于發(fā)現(xiàn)數(shù)據(jù)中的異常值或離群點(diǎn)。假設(shè)我們?cè)诜治錾a(chǎn)線上的產(chǎn)品質(zhì)量數(shù)據(jù),以下哪種異常檢測(cè)方法可能適用于檢測(cè)突然出現(xiàn)的質(zhì)量下降?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.以上都是12、數(shù)據(jù)分析過(guò)程中,數(shù)據(jù)清洗是重要的環(huán)節(jié)。以下關(guān)于數(shù)據(jù)清洗目的的說(shuō)法中,錯(cuò)誤的是?()A.去除數(shù)據(jù)中的噪聲和異常值,提高數(shù)據(jù)質(zhì)量,為后續(xù)分析提供可靠基礎(chǔ)B.統(tǒng)一數(shù)據(jù)格式和單位,使不同來(lái)源的數(shù)據(jù)能夠進(jìn)行有效的整合和比較C.數(shù)據(jù)清洗可以增加數(shù)據(jù)的數(shù)量,從而提高數(shù)據(jù)分析結(jié)果的準(zhǔn)確性D.修復(fù)數(shù)據(jù)中的缺失值,確保數(shù)據(jù)的完整性,避免因缺失數(shù)據(jù)而影響分析結(jié)果13、對(duì)于一個(gè)不平衡的數(shù)據(jù)集,若要通過(guò)采樣方法來(lái)平衡數(shù)據(jù),以下哪種采樣策略可能會(huì)導(dǎo)致過(guò)擬合?()A.隨機(jī)過(guò)采樣B.隨機(jī)欠采樣C.SMOTE采樣D.以上都有可能14、數(shù)據(jù)分析中的文本分析是一個(gè)重要領(lǐng)域。假設(shè)你要對(duì)大量的客戶評(píng)論進(jìn)行情感分析,判斷是正面、負(fù)面還是中性。以下關(guān)于文本分析方法的選擇,哪一項(xiàng)是最重要的?()A.使用詞袋模型,基于詞頻統(tǒng)計(jì)進(jìn)行分析B.運(yùn)用深度學(xué)習(xí)模型,如卷積神經(jīng)網(wǎng)絡(luò),自動(dòng)提取特征C.借助詞典和規(guī)則,根據(jù)預(yù)定義的情感詞和句式判斷D.隨機(jī)抽取部分評(píng)論進(jìn)行人工分析,以此類推整體15、數(shù)據(jù)分析中的模型選擇需要根據(jù)問(wèn)題的特點(diǎn)和數(shù)據(jù)的性質(zhì)來(lái)決定。假設(shè)要預(yù)測(cè)股票價(jià)格的短期波動(dòng),數(shù)據(jù)具有高噪聲和非線性特征。以下哪種模型在處理這種復(fù)雜的金融數(shù)據(jù)時(shí)更有可能取得較好的預(yù)測(cè)效果?()A.線性回歸模型B.決策樹(shù)模型C.支持向量回歸模型D.深度學(xué)習(xí)模型16、關(guān)于數(shù)據(jù)分析中的時(shí)間序列分析,假設(shè)要預(yù)測(cè)某股票價(jià)格在未來(lái)一段時(shí)間的走勢(shì)。時(shí)間序列數(shù)據(jù)具有季節(jié)性、趨勢(shì)性和隨機(jī)性等特點(diǎn)。以下哪種方法可能更適合進(jìn)行準(zhǔn)確的預(yù)測(cè)?()A.移動(dòng)平均法,平滑數(shù)據(jù)B.指數(shù)平滑法,考慮不同權(quán)重C.ARIMA模型,結(jié)合自回歸和移動(dòng)平均D.不進(jìn)行預(yù)測(cè),隨機(jī)猜測(cè)股票價(jià)格17、在進(jìn)行假設(shè)檢驗(yàn)時(shí),如果p值小于設(shè)定的顯著性水平(如0.05),我們通常會(huì)得出以下哪種結(jié)論?()A.拒絕原假設(shè)B.接受原假設(shè)C.無(wú)法確定是否拒絕原假設(shè)D.需要重新進(jìn)行實(shí)驗(yàn)18、數(shù)據(jù)分析中的倫理和道德問(wèn)題也需要引起關(guān)注。假設(shè)要使用個(gè)人數(shù)據(jù)進(jìn)行分析,以下關(guān)于倫理和道德原則的描述,正確的是:()A.未經(jīng)用戶授權(quán),擅自使用個(gè)人數(shù)據(jù)進(jìn)行分析B.不明確告知用戶數(shù)據(jù)的使用目的和方式,侵犯用戶知情權(quán)C.遵循合法、公正、透明、最小化使用和安全保障等原則,在獲得用戶明確授權(quán)的前提下,合理使用個(gè)人數(shù)據(jù),并采取措施保護(hù)用戶隱私和權(quán)益D.認(rèn)為數(shù)據(jù)分析中的倫理和道德問(wèn)題不重要,只要能得到有價(jià)值的結(jié)果就行19、數(shù)據(jù)分析中,數(shù)據(jù)可視化的創(chuàng)新可以帶來(lái)更好的用戶體驗(yàn)。以下關(guān)于數(shù)據(jù)可視化創(chuàng)新的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)可視化創(chuàng)新可以包括使用新的圖表類型、交互方式和可視化技術(shù)等B.數(shù)據(jù)可視化創(chuàng)新應(yīng)結(jié)合具體的問(wèn)題和數(shù)據(jù)特點(diǎn),不能為了創(chuàng)新而創(chuàng)新C.數(shù)據(jù)可視化創(chuàng)新可以提高數(shù)據(jù)分析的效率和準(zhǔn)確性,增強(qiáng)數(shù)據(jù)的說(shuō)服力D.數(shù)據(jù)可視化創(chuàng)新只需要關(guān)注技術(shù)層面,不需要考慮用戶的需求和感受20、數(shù)據(jù)分析中的描述性統(tǒng)計(jì)能夠提供數(shù)據(jù)的基本特征。假設(shè)要分析一組學(xué)生的考試成績(jī),以下關(guān)于描述性統(tǒng)計(jì)的描述,哪一項(xiàng)是不正確的?()A.均值可以反映成績(jī)的平均水平,但容易受到極端值的影響B(tài).中位數(shù)能夠較好地抵御極端值的干擾,代表數(shù)據(jù)的中間位置C.標(biāo)準(zhǔn)差越大,說(shuō)明成績(jī)的分布越分散,但這并不一定意味著數(shù)據(jù)質(zhì)量差D.只要計(jì)算了均值和中位數(shù),就足以全面了解數(shù)據(jù)的分布情況,不需要考慮其他統(tǒng)計(jì)量二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)在進(jìn)行回歸分析時(shí),如何判斷模型是否存在過(guò)擬合或欠擬合?請(qǐng)介紹診斷方法和解決措施。2、(本題5分)在進(jìn)行數(shù)據(jù)可視化時(shí),如何選擇合適的顏色方案來(lái)增強(qiáng)圖表的可讀性和表現(xiàn)力?解釋顏色心理學(xué)在數(shù)據(jù)可視化中的應(yīng)用。3、(本題5分)闡述數(shù)據(jù)可視化中的動(dòng)畫(huà)效果運(yùn)用,說(shuō)明如何通過(guò)動(dòng)畫(huà)效果增強(qiáng)數(shù)據(jù)展示的動(dòng)態(tài)性和吸引力,并避免過(guò)度使用。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某在線音樂(lè)平臺(tái)的古典音樂(lè)類目擁有用戶數(shù)據(jù),包括收聽(tīng)時(shí)長(zhǎng)、曲目、演奏家、收藏行為等。分析用戶對(duì)不同演奏家的曲目收聽(tīng)偏好和收藏特點(diǎn)。2、(本題5分)一家連鎖書(shū)店的兒童圖書(shū)區(qū)域記錄了銷售數(shù)據(jù),包括圖書(shū)題材、作者、銷量、價(jià)格、促銷活動(dòng)等。研究不同題材兒童圖書(shū)在促銷活動(dòng)下的銷售表現(xiàn)。3、(本題5分)某運(yùn)動(dòng)裝備品牌公司積累了產(chǎn)品銷售數(shù)據(jù)、市場(chǎng)競(jìng)爭(zhēng)情況、消費(fèi)者評(píng)價(jià)等。分析品牌的市場(chǎng)定位和競(jìng)爭(zhēng)優(yōu)勢(shì),制定發(fā)展策略。4、(本題5分)某超市的生鮮類目記錄了銷售數(shù)據(jù),包括商品種類、銷售數(shù)量、價(jià)格、促銷活動(dòng)、季節(jié)因素等。分析季節(jié)因素對(duì)不同生鮮商品銷售和促銷活動(dòng)效果的影響。5、(本題5分)一家手機(jī)制造商收集了產(chǎn)品的銷售數(shù)據(jù),包括型號(hào)、顏色、配置、銷售地區(qū)、銷售數(shù)量等。研究各地區(qū)對(duì)不同型號(hào)和配置手機(jī)的偏好差異以及銷售趨勢(shì)。四、論述題(本大題共2個(gè)小題,共20分)1、(本題10分)金融行業(yè)面臨著復(fù)雜的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論