版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆上海市北虹、上理工附中高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.為了進(jìn)一步提升駕駛?cè)私煌ò踩拿饕庾R(shí),駕考新規(guī)要求駕校學(xué)員必須到街道路口執(zhí)勤站崗,協(xié)助交警勸導(dǎo)交通.現(xiàn)有甲、乙等5名駕校學(xué)員按要求分配到三個(gè)不同的路口站崗,每個(gè)路口至少一人,且甲、乙在同一路口的分配方案共有()A.12種 B.24種 C.36種 D.48種2.已知集合,,若,則()A.4 B.-4 C.8 D.-83.馬林●梅森是17世紀(jì)法國(guó)著名的數(shù)學(xué)家和修道士,也是當(dāng)時(shí)歐洲科學(xué)界一位獨(dú)特的中心人物,梅森在歐幾里得、費(fèi)馬等人研究的基礎(chǔ)上對(duì)2p﹣1作了大量的計(jì)算、驗(yàn)證工作,人們?yōu)榱思o(jì)念梅森在數(shù)論方面的這一貢獻(xiàn),將形如2P﹣1(其中p是素?cái)?shù))的素?cái)?shù),稱為梅森素?cái)?shù).若執(zhí)行如圖所示的程序框圖,則輸出的梅森素?cái)?shù)的個(gè)數(shù)是()A.3 B.4 C.5 D.64.函數(shù)在上為增函數(shù),則的值可以是()A.0 B. C. D.5.已知函數(shù),則()A. B. C. D.6.已知,,若,則向量在向量方向的投影為()A. B. C. D.7.根據(jù)最小二乘法由一組樣本點(diǎn)(其中),求得的回歸方程是,則下列說(shuō)法正確的是()A.至少有一個(gè)樣本點(diǎn)落在回歸直線上B.若所有樣本點(diǎn)都在回歸直線上,則變量同的相關(guān)系數(shù)為1C.對(duì)所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關(guān)8.設(shè)復(fù)數(shù)滿足,則()A.1 B.-1 C. D.9.已知函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.10.設(shè)直線的方程為,圓的方程為,若直線被圓所截得的弦長(zhǎng)為,則實(shí)數(shù)的取值為A.或11 B.或11 C. D.11.已知是函數(shù)的極大值點(diǎn),則的取值范圍是A. B.C. D.12.點(diǎn)在所在的平面內(nèi),,,,,且,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若直線與直線交于點(diǎn),則長(zhǎng)度的最大值為_(kāi)___.14.已知橢圓的下頂點(diǎn)為,若直線與橢圓交于不同的兩點(diǎn)、,則當(dāng)_____時(shí),外心的橫坐標(biāo)最大.15.已知,,求____________.16.已知圓柱的上、下底面的中心分別為,,過(guò)直線的平面截該圓柱所得的截面是面積為8的正方形,則該圓柱的表面積為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)系xOy中,直線的參數(shù)方程為(t為參數(shù),).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.(l)求直線的普通方程和曲線C的直角坐標(biāo)方程:(2)若直線與曲線C相交于A,B兩點(diǎn),且.求直線的方程.18.(12分)如圖,在四棱柱中,底面是正方形,平面平面,,.過(guò)頂點(diǎn),的平面與棱,分別交于,兩點(diǎn).(Ⅰ)求證:;(Ⅱ)求證:四邊形是平行四邊形;(Ⅲ)若,試判斷二面角的大小能否為?說(shuō)明理由.19.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線與曲線交于兩點(diǎn).(1)求的長(zhǎng);(2)在以為極點(diǎn),軸的正半軸為極軸建立的極坐標(biāo)系中,設(shè)點(diǎn)的極坐標(biāo)為,求點(diǎn)到線段中點(diǎn)的距離.20.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,射線與曲線交于點(diǎn),將射線繞極點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)交曲線于點(diǎn).(1)求曲線的參數(shù)方程;(2)求面積的最大值.21.(12分)已知函數(shù),直線是曲線在處的切線.(1)求證:無(wú)論實(shí)數(shù)取何值,直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);(2)若直線經(jīng)過(guò)點(diǎn),試判斷函數(shù)的零點(diǎn)個(gè)數(shù)并證明.22.(10分)已知直線:與拋物線切于點(diǎn),直線:過(guò)定點(diǎn)Q,且拋物線上的點(diǎn)到點(diǎn)Q的距離與其到準(zhǔn)線距離之和的最小值為.(1)求拋物線的方程及點(diǎn)的坐標(biāo);(2)設(shè)直線與拋物線交于(異于點(diǎn)P)兩個(gè)不同的點(diǎn)A、B,直線PA,PB的斜率分別為,那么是否存在實(shí)數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
先將甲、乙兩人看作一個(gè)整體,當(dāng)作一個(gè)元素,再將這四個(gè)元素分成3個(gè)部分,每一個(gè)部分至少一個(gè),再將這3部分分配到3個(gè)不同的路口,根據(jù)分步計(jì)數(shù)原理可得選項(xiàng).【詳解】把甲、乙兩名交警看作一個(gè)整體,個(gè)人變成了4個(gè)元素,再把這4個(gè)元素分成3部分,每部分至少有1個(gè)人,共有種方法,再把這3部分分到3個(gè)不同的路口,有種方法,由分步計(jì)數(shù)原理,共有種方案。故選:C.【點(diǎn)睛】本題主要考查排列與組合,常常運(yùn)用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問(wèn)題,屬于中檔題.2、B【解析】
根據(jù)交集的定義,,可知,代入計(jì)算即可求出.【詳解】由,可知,又因?yàn)?,所以時(shí),,解得.故選:B.【點(diǎn)睛】本題考查交集的概念,屬于基礎(chǔ)題.3、C【解析】
模擬程序的運(yùn)行即可求出答案.【詳解】解:模擬程序的運(yùn)行,可得:p=1,S=1,輸出S的值為1,滿足條件p≤7,執(zhí)行循環(huán)體,p=3,S=7,輸出S的值為7,滿足條件p≤7,執(zhí)行循環(huán)體,p=5,S=31,輸出S的值為31,滿足條件p≤7,執(zhí)行循環(huán)體,p=7,S=127,輸出S的值為127,滿足條件p≤7,執(zhí)行循環(huán)體,p=9,S=511,輸出S的值為511,此時(shí),不滿足條件p≤7,退出循環(huán),結(jié)束,故若執(zhí)行如圖所示的程序框圖,則輸出的梅森素?cái)?shù)的個(gè)數(shù)是5,故選:C.【點(diǎn)睛】本題主要考查程序框圖,屬于基礎(chǔ)題.4、D【解析】
依次將選項(xiàng)中的代入,結(jié)合正弦、余弦函數(shù)的圖象即可得到答案.【詳解】當(dāng)時(shí),在上不單調(diào),故A不正確;當(dāng)時(shí),在上單調(diào)遞減,故B不正確;當(dāng)時(shí),在上不單調(diào),故C不正確;當(dāng)時(shí),在上單調(diào)遞增,故D正確.故選:D【點(diǎn)睛】本題考查正弦、余弦函數(shù)的單調(diào)性,涉及到誘導(dǎo)公式的應(yīng)用,是一道容易題.5、A【解析】
根據(jù)分段函數(shù)解析式,先求得的值,再求得的值.【詳解】依題意,.故選:A【點(diǎn)睛】本小題主要考查根據(jù)分段函數(shù)解析式求函數(shù)值,屬于基礎(chǔ)題.6、B【解析】
由,,,再由向量在向量方向的投影為化簡(jiǎn)運(yùn)算即可【詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.【點(diǎn)睛】本題考查向量投影的幾何意義,屬于基礎(chǔ)題7、D【解析】
對(duì)每一個(gè)選項(xiàng)逐一分析判斷得解.【詳解】回歸直線必過(guò)樣本數(shù)據(jù)中心點(diǎn),但樣本點(diǎn)可能全部不在回歸直線上﹐故A錯(cuò)誤;所有樣本點(diǎn)都在回歸直線上,則變量間的相關(guān)系數(shù)為,故B錯(cuò)誤;若所有的樣本點(diǎn)都在回歸直線上,則的值與相等,故C錯(cuò)誤;相關(guān)系數(shù)r與符號(hào)相同,若回歸直線的斜率,則,樣本點(diǎn)分布應(yīng)從左到右是上升的,則變量x與y正相關(guān),故D正確.故選D.【點(diǎn)睛】本題主要考查線性回歸方程的性質(zhì),意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.8、B【解析】
利用復(fù)數(shù)的四則運(yùn)算即可求解.【詳解】由.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算,需掌握復(fù)數(shù)的運(yùn)算法則,屬于基礎(chǔ)題.9、B【解析】
可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B【點(diǎn)睛】本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識(shí),考查了學(xué)生的運(yùn)算求解能力.10、A【解析】
圓的圓心坐標(biāo)為(1,1),該圓心到直線的距離,結(jié)合弦長(zhǎng)公式得,解得或,故選A.11、B【解析】
方法一:令,則,,當(dāng),時(shí),,單調(diào)遞減,∴時(shí),,,且,∴,即在上單調(diào)遞增,時(shí),,,且,∴,即在上單調(diào)遞減,∴是函數(shù)的極大值點(diǎn),∴滿足題意;當(dāng)時(shí),存在使得,即,又在上單調(diào)遞減,∴時(shí),,所以,這與是函數(shù)的極大值點(diǎn)矛盾.綜上,.故選B.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點(diǎn),須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時(shí),與相切于原點(diǎn),所以根據(jù)與的圖象關(guān)系,可得,故選B.12、D【解析】
確定點(diǎn)為外心,代入化簡(jiǎn)得到,,再根據(jù)計(jì)算得到答案.【詳解】由可知,點(diǎn)為外心,則,,又,所以①因?yàn)椋诼?lián)立方程①②可得,,,因?yàn)椋?,即.故選:【點(diǎn)睛】本題考查了向量模長(zhǎng)的計(jì)算,意在考查學(xué)生的計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意可知,直線與直線分別過(guò)定點(diǎn),且這兩條直線互相垂直,由此可知,其交點(diǎn)在以為直徑的圓上,結(jié)合圖形求出線段的最大值即可.【詳解】由題可知,直線可化為,所以其過(guò)定點(diǎn),直線可化為,所以其過(guò)定點(diǎn),且滿足,所以直線與直線互相垂直,其交點(diǎn)在以為直徑的圓上,作圖如下:結(jié)合圖形可知,線段的最大值為,因?yàn)闉榫€段的中點(diǎn),所以由中點(diǎn)坐標(biāo)公式可得,所以線段的最大值為.故答案為:【點(diǎn)睛】本題考查過(guò)交點(diǎn)的直線系方程、動(dòng)點(diǎn)的軌跡問(wèn)題及點(diǎn)與圓的位置關(guān)系;考查數(shù)形結(jié)合思想和運(yùn)算求解能力;根據(jù)圓的定義得到交點(diǎn)在以為直徑的圓上是求解本題的關(guān)鍵;屬于中檔題.14、【解析】
由已知可得、的坐標(biāo),求得的垂直平分線方程,聯(lián)立已知直線方程與橢圓方程,求得的垂直平分線方程,兩垂直平分線方程聯(lián)立求得外心的橫坐標(biāo),再由導(dǎo)數(shù)求最值.【詳解】如圖,由已知條件可知,不妨設(shè),則外心在的垂直平分線上,即在直線,也就是在直線上,聯(lián)立,得或,的中點(diǎn)坐標(biāo)為,則的垂直平分線方程為,把代入上式,得,令,則,由,得(舍)或.當(dāng)時(shí),,當(dāng)時(shí),.當(dāng)時(shí),函數(shù)取極大值,亦為最大值.故答案為:.【點(diǎn)睛】本題考查直線與橢圓位置關(guān)系的應(yīng)用,訓(xùn)練了利用導(dǎo)數(shù)求最值,是中等題.15、【解析】
求出向量的坐標(biāo),然后利用向量數(shù)量積的坐標(biāo)運(yùn)算可計(jì)算出結(jié)果.【詳解】,,,因此,.故答案為:.【點(diǎn)睛】本題考查平面向量數(shù)量積的坐標(biāo)運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.16、【解析】
設(shè)圓柱的軸截面的邊長(zhǎng)為x,可求得,代入圓柱的表面積公式,即得解【詳解】設(shè)圓柱的軸截面的邊長(zhǎng)為x,則由,得,∴.故答案為:【點(diǎn)睛】本題考查了圓柱的軸截面和表面積,考查了學(xué)生空間想象,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)【解析】
(1)將消去參數(shù)t可得直線的普通方程,利用x=ρcosθ,可將極坐標(biāo)方程轉(zhuǎn)為直角坐標(biāo)方程.(2)利用直線被圓截得的弦長(zhǎng)公式計(jì)算可得答案.【詳解】(1)由消去參數(shù)t得(),由得曲線C的直角坐標(biāo)方程為:(2)由得,圓心為(1,0),半徑為2,圓心到直線的距離為,∴,即,整理得,∵,∴,,,所以直線l的方程為:.【點(diǎn)睛】本題考查參數(shù)方程,極坐標(biāo)方程與直角坐標(biāo)方程之間的互化,考查直線被圓截得的弦長(zhǎng)公式的應(yīng)用,考查分析能力與計(jì)算能力,屬于基礎(chǔ)題.18、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)不能為.【解析】
(1)由平面平面,可得平面,從而證明;(2)由平面與平面沒(méi)有交點(diǎn),可得與不相交,又與共面,所以,同理可證,得證;(3)作交于點(diǎn),延長(zhǎng)交于點(diǎn),連接,根據(jù)三垂線定理,確定二面角的平面角,若,,由大角對(duì)大邊知,兩者矛盾,故二面角的大小不能為.【詳解】(1)由平面平面,平面平面,且,所以平面,又平面,所以;(2)依題意都在平面上,因此平面,平面,又平面,平面,平面與平面平行,即兩個(gè)平面沒(méi)有交點(diǎn),則與不相交,又與共面,所以,同理可證,所以四邊形是平行四邊形;(3)不能.如圖,作交于點(diǎn),延長(zhǎng)交于點(diǎn),連接,由,,,所以平面,則平面,又,根據(jù)三垂線定理,得到,所以是二面角的平面角,若,則是等腰直角三角形,,又,所以中,由大角對(duì)大邊知,所以,這與上面相矛盾,所以二面角的大小不能為.【點(diǎn)睛】本題考查了立體幾何中的線線平行和垂直的判定問(wèn)題,和二面角的求解問(wèn)題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,屬中檔題.19、(1);(2).【解析】
(1)將直線的參數(shù)方程化為直角坐標(biāo)方程,由點(diǎn)到直線距離公式可求得圓心到直線距離,結(jié)合垂徑定理即可求得的長(zhǎng);(2)將的極坐標(biāo)化為直角坐標(biāo),將直線方程與圓的方程聯(lián)立,求得直線與圓的兩個(gè)交點(diǎn)坐標(biāo),由中點(diǎn)坐標(biāo)公式求得的坐標(biāo),再根據(jù)兩點(diǎn)間距離公式即可求得.【詳解】(1)直線的參數(shù)方程為(為參數(shù)),化為直角坐標(biāo)方程為,即直線與曲線交于兩點(diǎn).則圓心坐標(biāo)為,半徑為1,則由點(diǎn)到直線距離公式可知,所以.(2)點(diǎn)的極坐標(biāo)為,化為直角坐標(biāo)可得,直線的方程與曲線的方程聯(lián)立,化簡(jiǎn)可得,解得,所以兩點(diǎn)坐標(biāo)為,所以,由兩點(diǎn)間距離公式可得.【點(diǎn)睛】本題考查了參數(shù)方程與普通方程轉(zhuǎn)化,極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化,點(diǎn)到直線距離公式應(yīng)用,兩點(diǎn)間距離公式的應(yīng)用,直線與圓交點(diǎn)坐標(biāo)求法,屬于基礎(chǔ)題.20、(1)(為參數(shù));(2).【解析】
(1)根據(jù)伸縮變換結(jié)合曲線的參數(shù)方程可得出曲線的參數(shù)方程;(2)將曲線的方程化為普通方程,然后化為極坐標(biāo)方程,設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,將這兩點(diǎn)的極坐標(biāo)代入橢圓的極坐標(biāo)方程,得出和關(guān)于的表達(dá)式,然后利用三角恒等變換思想即可求出面積的最大值.【詳解】(1)由于曲線的參數(shù)方程為(為參數(shù)),將曲線上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到曲線,則曲線的參數(shù)方程為(為參數(shù));(2)將曲線的參數(shù)方程化為普通方程得,化為極坐標(biāo)方程得,即,設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)的極坐標(biāo)為,將這兩點(diǎn)的極坐標(biāo)代入橢圓的極坐標(biāo)方程得,,的面積為,當(dāng)時(shí),的面積取到最大值.【點(diǎn)睛】本題考查參數(shù)方程、極坐標(biāo)方程與普通方程的互化,考查了伸縮變換,同時(shí)也考查了利用極坐標(biāo)方程求解三角形面積的最值問(wèn)題,要熟悉極坐標(biāo)方程所適用的基本類型,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.21、(1)見(jiàn)解析,(2)函數(shù)存在唯一零點(diǎn).【解析】
(1)首先求出導(dǎo)函數(shù),利用導(dǎo)數(shù)的幾何意義求出處的切線斜率,利用點(diǎn)斜式即可求出切線方程,根據(jù)方程即可求出定點(diǎn).(2)由(1)求出函數(shù),令方程可轉(zhuǎn)化為記,利用導(dǎo)數(shù)判斷函數(shù)在上單調(diào)遞增,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老院老人康復(fù)訓(xùn)練指導(dǎo)制度
- 《服務(wù)成就價(jià)值》課件
- 技術(shù)合同范本
- 2024年塔吊司機(jī)安全操作培訓(xùn)與勞動(dòng)權(quán)益保障協(xié)議3篇
- 6 《哈姆萊特(節(jié)選)》(學(xué)案)-教案課件-部編高中語(yǔ)文必修下冊(cè)
- 2024年生日蛋糕定制與航空旅行禮品合作合同2篇
- 《脊柱區(qū)局部解剖學(xué)》課件
- 2025年湖北貨運(yùn)上崗證模擬考試題
- 2024年水路貨物運(yùn)輸節(jié)能減排管理細(xì)則合同3篇
- 2025年太原貨運(yùn)從業(yè)資格考試模擬考試題目及答案
- DB3710T 190-2023 花生病蟲(chóng)草害綠色防控技術(shù)規(guī)程
- 2024年墊資與分成合作合同3篇
- 大部分分校:地域文化形考任務(wù)四-國(guó)開(kāi)(CQ)-國(guó)開(kāi)期末復(fù)習(xí)資料
- 【MOOC】中西文化鑒賞-鄭州大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 2024全球體育行業(yè)調(diào)研報(bào)告(第八期)-漸入佳境
- 2024-2030年中國(guó)橄欖油行業(yè)市場(chǎng)發(fā)展動(dòng)態(tài)及前景趨勢(shì)分析報(bào)告
- 事業(yè)單位考試職業(yè)能力傾向測(cè)驗(yàn)(綜合管理類A類)試題與參考答案(2024年)
- GB/T 15934-2024電器附件電線組件和互連電線組件
- 空調(diào)維保服務(wù)投標(biāo)方案 (技術(shù)方案)
- 《建筑工程設(shè)計(jì)文件編制深度規(guī)定》(2022年版)
- 2024年共青團(tuán)入團(tuán)積極分子考試題庫(kù)(附答案)
評(píng)論
0/150
提交評(píng)論