版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁曲靖職業(yè)技術學院《Photoshop與SketchUp》
2023-2024學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺中,特征提取是非常關鍵的一步。假設我們要從圖像中提取有意義的特征,用于后續(xù)的處理和分析,以下關于特征提取方法的描述,哪一項是不正確的?()A.SIFT(尺度不變特征變換)和SURF(加速穩(wěn)健特征)是常用的局部特征描述子,對圖像的旋轉(zhuǎn)、縮放和光照變化具有一定的不變性B.HOG(方向梯度直方圖)特征通過計算圖像局部區(qū)域的梯度方向分布來描述圖像,常用于行人檢測C.深度學習中的自動特征提取,例如通過卷積神經(jīng)網(wǎng)絡學習到的特征,比手工設計的特征更具有代表性和判別力D.特征提取的結(jié)果對后續(xù)的圖像處理任務影響不大,不同的特征提取方法可以得到相似的處理效果2、在計算機視覺中,目標檢測是一項重要任務。假設我們要開發(fā)一個能夠在交通場景中檢測車輛的系統(tǒng)。如果圖像中的車輛存在多種姿態(tài)、大小和光照條件的變化,以下哪種目標檢測算法可能更適合應對這種復雜情況?()A.基于傳統(tǒng)特征的檢測算法,如HOG特征結(jié)合SVM分類器B.基于深度學習的FasterR-CNN算法C.基于模板匹配的檢測算法D.基于顏色特征的檢測算法3、在計算機視覺的立體視覺任務中,通過兩個或多個相機獲取的圖像來計算深度信息。以下哪種立體匹配算法在精度和效率方面可能表現(xiàn)較好?()A.基于區(qū)域的匹配算法B.基于特征的匹配算法C.基于深度學習的匹配算法D.以上都是4、計算機視覺在工業(yè)檢測中的應用越來越廣泛。假設要檢測電子電路板上的微小缺陷,以下關于圖像采集設備的選擇,哪一項是最為關鍵的?()A.選擇高分辨率的數(shù)碼相機,獲取清晰的圖像B.選用具有大景深的鏡頭,確保整個電路板都清晰成像C.采用高速攝像機,快速采集大量圖像D.選擇價格低廉的圖像采集設備,降低成本5、計算機視覺中的場景理解需要從圖像中推斷出物體之間的關系和場景的語義信息。假設要理解一張室內(nèi)辦公室場景的圖像,包括家具的布局、人員的活動等。以下哪種方法在進行場景理解時最為有效?()A.基于對象檢測和分類的方法B.基于圖模型的場景表示C.基于深度學習的場景解析D.基于規(guī)則推理的方法6、計算機視覺在農(nóng)業(yè)領域的應用可以幫助實現(xiàn)精準農(nóng)業(yè)。假設一個農(nóng)場需要通過計算機視覺監(jiān)測農(nóng)作物的生長狀況。以下關于計算機視覺在農(nóng)業(yè)中的描述,哪一項是錯誤的?()A.可以檢測農(nóng)作物的病蟲害,及時采取防治措施B.能夠評估農(nóng)作物的生長階段和成熟度,指導收獲時間C.計算機視覺在農(nóng)業(yè)中的應用完全不受天氣和光照條件的影響D.可以通過無人機搭載攝像頭進行大面積的農(nóng)田監(jiān)測7、在計算機視覺的視頻理解任務中,例如理解一段體育比賽視頻中的精彩瞬間和戰(zhàn)術,需要對視頻中的時空信息進行有效建模。以下哪種方法在時空建模方面可能具有優(yōu)勢?()A.3D卷積神經(jīng)網(wǎng)絡B.長短時記憶網(wǎng)絡C.注意力機制D.以上都是8、計算機視覺中的光流估計用于計算圖像中像素的運動信息。假設要估計一段視頻中物體的運動速度和方向,以下關于光流估計方法的描述,正確的是:()A.傳統(tǒng)的基于梯度的光流估計方法在復雜場景中能夠準確計算光流B.深度學習中的光流估計網(wǎng)絡不需要大量的標注數(shù)據(jù)進行訓練C.光流估計的結(jié)果不受圖像噪聲和模糊的影響D.結(jié)合時空信息的深度學習光流估計方法能夠提高估計的準確性和魯棒性9、計算機視覺中的場景理解是一項具有挑戰(zhàn)性的任務。假設要理解一個城市街道的場景圖像,包括道路、建筑物、車輛和行人等元素。以下關于場景理解方法的描述,正確的是:()A.基于語義分割的方法能夠?qū)D像中的每個像素分類為不同的場景元素,但無法提供元素之間的關系B.目標檢測結(jié)合語義分割可以實現(xiàn)對場景的初步理解,但對于復雜的場景結(jié)構(gòu)難以準確描述C.基于圖模型的方法能夠很好地表示場景元素之間的關系,但建模過程復雜,計算量大D.場景理解只需要對圖像中的可見元素進行分析,不需要考慮潛在的語義信息10、在計算機視覺的視頻分析中,需要處理連續(xù)的圖像幀。假設要分析一段監(jiān)控視頻中的人員行為,以下關于視頻分析方法的描述,哪一項是不正確的?()A.光流法可以用于計算相鄰幀之間的像素運動,從而跟蹤物體的運動軌跡B.可以通過對視頻幀進行分類和檢測,來識別和分析人員的行為模式C.視頻分析需要考慮時間維度上的信息,不僅僅是單個圖像幀的特征D.視頻分析只適用于簡單的場景和行為,對于復雜的多人交互場景無法進行有效的分析11、計算機視覺中的場景理解任務旨在理解圖像或視頻中的整體場景信息。假設要理解一張城市街道的圖片中的場景。以下關于場景理解的描述,哪一項是錯誤的?()A.可以通過對物體、人物和環(huán)境的分析來理解場景的語義信息B.深度學習中的語義分割技術可以幫助區(qū)分場景中的不同區(qū)域和物體類別C.場景理解只需要考慮圖像中的視覺元素,不需要考慮上下文和先驗知識D.可以結(jié)合地理信息和時間信息,進一步豐富對場景的理解12、計算機視覺中的手勢識別用于理解人的手勢動作。假設要在一個智能交互系統(tǒng)中實現(xiàn)實時準確的手勢識別,以下關于手勢識別方法的描述,正確的是:()A.基于傳感器的手勢識別方法能夠精確獲取手勢的運動信息,但佩戴傳感器不方便B.基于視覺的手勢識別方法不受環(huán)境光照和背景的影響,識別穩(wěn)定性高C.深度學習中的卷積神經(jīng)網(wǎng)絡在手勢識別中無法處理復雜的手勢變化和遮擋D.手勢識別系統(tǒng)只要能夠識別常見的幾種手勢,就能夠滿足大多數(shù)應用需求13、圖像超分辨率是指從低分辨率圖像生成高分辨率圖像。假設我們有一張模糊的低分辨率老照片,想要將其清晰化并提高分辨率。以下哪種圖像超分辨率方法能夠生成更逼真的細節(jié)和更清晰的邊緣?()A.基于插值的方法,如雙線性插值B.基于重建的方法,如基于字典學習的方法C.基于深度學習的方法,如SRCNND.基于小波變換的方法14、在計算機視覺的目標識別任務中,除了識別目標的類別,還需要確定目標的位置和大小。假設我們要在一幅復雜的圖像中識別多個不同大小的物體,以下哪種目標識別算法能夠適應不同尺度的目標?()A.基于滑動窗口的目標識別算法B.基于特征金字塔的目標識別算法C.基于注意力機制的目標識別算法D.基于模板匹配的目標識別算法15、計算機視覺在農(nóng)業(yè)中的應用可以幫助監(jiān)測農(nóng)作物的生長狀況。假設要通過圖像分析判斷農(nóng)作物的病蟲害程度,以下關于農(nóng)業(yè)計算機視覺應用的描述,正確的是:()A.僅依靠農(nóng)作物的顏色特征就能準確判斷病蟲害的程度B.不同農(nóng)作物品種和生長階段對病蟲害判斷的影響不大C.結(jié)合圖像的紋理、形狀和顏色等多特征,可以更準確地評估農(nóng)作物的健康狀況D.農(nóng)業(yè)環(huán)境的復雜性對計算機視覺的應用沒有挑戰(zhàn)16、在計算機視覺的圖像修復任務中,假設圖像中有大面積的損壞或缺失區(qū)域,以下哪種方法可能更依賴于對圖像全局結(jié)構(gòu)的理解?()A.基于紋理合成的方法B.基于擴散的方法C.基于深度學習的方法D.基于樣例的方法17、在計算機視覺的目標識別任務中,假設目標物體被部分遮擋,以下哪種模型架構(gòu)可能更有助于恢復被遮擋部分的信息?()A.多層感知機(MLP)B.卷積神經(jīng)網(wǎng)絡(CNN)C.循環(huán)神經(jīng)網(wǎng)絡(RNN)D.注意力機制(AttentionMechanism)18、計算機視覺中的目標跟蹤是指在視頻序列中持續(xù)跟蹤特定目標。假設要跟蹤一個在復雜場景中運動的人物,以下關于目標跟蹤算法的描述,正確的是:()A.基于卡爾曼濾波的跟蹤算法能夠準確預測目標的運動軌跡,但對目標外觀變化適應性差B.基于粒子濾波的跟蹤算法計算復雜度低,適用于實時跟蹤要求高的場景C.基于深度學習的跟蹤算法需要大量的訓練數(shù)據(jù),并且在目標被遮擋時容易丟失D.目標跟蹤算法只要在初始幀中準確檢測到目標,就能夠在后續(xù)幀中一直保持跟蹤的準確性19、在計算機視覺的文本檢測和識別任務中,假設要從一張圖片中提取并識別其中的文字信息。以下關于文本檢測和識別的描述,哪一項是不正確的?()A.可以先通過文本檢測算法定位圖片中的文本區(qū)域,然后進行識別B.深度學習中的卷積神經(jīng)網(wǎng)絡在文本識別中表現(xiàn)出色,能夠準確識別各種字體和風格的文字C.文本檢測和識別對于彎曲、傾斜和模糊的文字能夠輕松應對,沒有任何困難D.可以結(jié)合光學字符識別(OCR)技術,將圖片中的文字轉(zhuǎn)換為可編輯的文本20、當進行圖像的風格遷移任務時,假設要將一張照片的風格轉(zhuǎn)換為著名繪畫的風格,同時保留照片的內(nèi)容結(jié)構(gòu)。以下哪種方法在實現(xiàn)這一目標時可能更有效?()A.使用基于卷積神經(jīng)網(wǎng)絡的風格遷移算法,如Gatys等人提出的方法B.對圖像進行簡單的色彩變換和濾鏡處理C.隨機改變圖像的像素值來模擬風格遷移D.只對圖像的邊緣進行處理,忽略內(nèi)部區(qū)域21、在計算機視覺的圖像檢索任務中,假設要從一個大型圖像數(shù)據(jù)庫中快速找到與給定圖像相似的圖像。以下關于圖像檢索方法的描述,正確的是:()A.基于文本標注的圖像檢索方法依賴于人工標注的準確性和完整性,檢索效果不穩(wěn)定B.基于內(nèi)容的圖像檢索通過提取圖像的特征進行相似性比較,但特征的選擇對檢索結(jié)果影響不大C.哈希方法能夠?qū)⒏呔S的圖像特征映射為低維的哈希碼,大大提高檢索效率,但會損失一定的準確性D.所有的圖像檢索方法都能夠在大規(guī)模數(shù)據(jù)庫中實現(xiàn)實時、準確的檢索22、計算機視覺在文物保護和修復中的應用可以幫助記錄和分析文物的狀態(tài)。假設要對一件古老的雕塑進行數(shù)字化保存和修復建議。以下關于計算機視覺在文物保護中的描述,哪一項是錯誤的?()A.可以通過三維掃描技術獲取文物的精確形狀和表面細節(jié)B.能夠?qū)ξ奈锏念伾图y理進行分析,為修復提供參考C.計算機視覺可以完全替代人工的文物修復工作,保證修復的質(zhì)量和效果D.可以建立文物的數(shù)字檔案,方便后續(xù)的研究和展示23、計算機視覺在智能零售中的應用可以改善購物體驗和提高運營效率。假設一個超市需要通過計算機視覺實現(xiàn)自動結(jié)賬和庫存管理。以下關于計算機視覺在智能零售中的描述,哪一項是不準確的?()A.可以通過商品識別技術自動識別顧客購買的商品,實現(xiàn)快速結(jié)賬B.能夠?qū)崟r監(jiān)測貨架上商品的庫存水平,及時提醒補貨C.計算機視覺系統(tǒng)能夠準確識別所有商品的包裝和標簽,不受商品擺放方式和遮擋的影響D.可以分析顧客在店內(nèi)的行為和偏好,為營銷策略提供數(shù)據(jù)支持24、在計算機視覺的行人重識別任務中,假設要在多個攝像頭拍攝的畫面中找到同一個行人。以下關于特征融合的方法,哪一項是不太合理的?()A.將行人的外觀特征和步態(tài)特征進行融合B.簡單地將不同特征進行拼接,不考慮權(quán)重分配C.根據(jù)特征的重要性為其分配不同的權(quán)重進行融合D.利用深度學習模型自動學習特征的融合方式25、計算機視覺中的人臉檢測和識別是熱門研究方向。假設要在一個大規(guī)模的人臉數(shù)據(jù)庫中進行快速準確的人臉識別,以下哪種特征提取方法可能更具優(yōu)勢?()A.基于幾何特征的方法B.基于局部二值模式(LBP)的方法C.基于深度學習的方法D.基于主成分分析(PCA)的方法二、簡答題(本大題共4個小題,共20分)1、(本題5分)說明計算機視覺在藝術創(chuàng)作和設計中的應用。2、(本題5分)解釋計算機視覺中的模型蒸餾技術。3、(本題5分)計算機視覺中如何進行表情識別?4、(本題5分)描述計算機視覺在航空故障檢測中的應用。三、分析題(本大題共5個小題,共25分)1、(本題5分)以一個科技公司的企業(yè)宣傳視頻設計為例,分析其如何運用視覺元素傳達公司文化和業(yè)務范圍。2、(本題5分)觀察某健身中心的室內(nèi)裝修和宣傳材料設計,分析如何運用色彩、圖形和空間規(guī)劃來激發(fā)人們的運動熱情和塑造專業(yè)形象。3、(本題5分)分析某茶葉品牌的包裝和宣傳冊設計,研究
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 埃萊爾-當洛綜合征的臨床護理
- JJF(陜) 111-2024 超聲流量計在線校準規(guī)范
- 《教綜合布線技術》課件
- 《保險家庭財產(chǎn)保險》課件
- 風險識別與評估技巧培訓
- 培養(yǎng)創(chuàng)新思維的方法計劃
- 深入分析行業(yè)趨勢制定行動方案計劃
- 2024-2025學年九年級數(shù)學人教版下冊專題整合復習卷第28章 銳角三角函數(shù)整章測試(含答案)
- 杠桿基金合同三篇
- 拖拉機及農(nóng)林牧漁用掛車相關行業(yè)投資方案
- 鋁壓鑄件企業(yè)生產(chǎn)安全事故風險評估報告(根據(jù)新應急預案編制導則編制)
- 生態(tài)文明-撐起美麗中國夢學習通章節(jié)答案期末考試題庫2023年
- 過敏性休克的搶救ppt
- 部編版五年級語文下冊全套一課一練練習(精編含答案)-2020042809395412
- 仿生機械蝎子設計說明書
- 1-12年級3500個核心單詞總結(jié)
- 公司采購工程師職位說明書
- 免疫治療免疫相關不良反應的處理
- 優(yōu)秀團隊申報材料【優(yōu)秀5篇】
- 大學與青年發(fā)展智慧樹知到答案章節(jié)測試2023年華僑大學
- 深圳市2021-2022學年初三年級中考適應性考試試題及答案
評論
0/150
提交評論