版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆吉林省吉林市吉林地區(qū)普通高中友好學(xué)校聯(lián)合體第三十一屆高三下學(xué)期第六次檢測數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.古希臘數(shù)學(xué)家畢達(dá)哥拉斯在公元前六世紀(jì)發(fā)現(xiàn)了第一、二個“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個“完全數(shù)”隨機(jī)分為兩組,一組2個,另一組3個,則6和28恰好在同一組的概率為A. B. C. D.2.在中,已知,,,為線段上的一點(diǎn),且,則的最小值為()A. B. C. D.3.已知函數(shù),則()A. B.1 C.-1 D.04.已知平面向量滿足,且,則所夾的銳角為()A. B. C. D.05.已知,,,若,則正數(shù)可以為()A.4 B.23 C.8 D.176.四人并排坐在連號的四個座位上,其中與不相鄰的所有不同的坐法種數(shù)是()A.12 B.16 C.20 D.87.費(fèi)馬素數(shù)是法國大數(shù)學(xué)家費(fèi)馬命名的,形如的素數(shù)(如:)為費(fèi)馬索數(shù),在不超過30的正偶數(shù)中隨機(jī)選取一數(shù),則它能表示為兩個不同費(fèi)馬素數(shù)的和的概率是()A. B. C. D.8.已知等差數(shù)列的前項和為,且,則()A.45 B.42 C.25 D.369.如圖,平面與平面相交于,,,點(diǎn),點(diǎn),則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點(diǎn)只能作唯一平面與垂直D.過一定能作一平面與垂直10.對于函數(shù),定義滿足的實(shí)數(shù)為的不動點(diǎn),設(shè),其中且,若有且僅有一個不動點(diǎn),則的取值范圍是()A.或 B.C.或 D.11.已知滿足,,,則在上的投影為()A. B. C. D.212.已知,復(fù)數(shù),,且為實(shí)數(shù),則()A. B. C.3 D.-3二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),(其中e為自然對數(shù)的底數(shù)),若關(guān)于x的方程恰有5個相異的實(shí)根,則實(shí)數(shù)a的取值范圍為________.14.拋物線的焦點(diǎn)到準(zhǔn)線的距離為.15.已知點(diǎn)是拋物線的準(zhǔn)線上一點(diǎn),F(xiàn)為拋物線的焦點(diǎn),P為拋物線上的點(diǎn),且,若雙曲線C中心在原點(diǎn),F(xiàn)是它的一個焦點(diǎn),且過P點(diǎn),當(dāng)m取最小值時,雙曲線C的離心率為______.16.已知三棱錐中,,,,且二面角的大小為,則三棱錐外接球的表面積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)記函數(shù)的最小值為.(1)求的值;(2)若正數(shù),,滿足,證明:.18.(12分)已知函數(shù)是減函數(shù).(1)試確定a的值;(2)已知數(shù)列,求證:.19.(12分)如圖,在四棱錐中,平面,,為的中點(diǎn).(1)求證:平面;(2)求二面角的余弦值.20.(12分)某學(xué)校為了解全校學(xué)生的體重情況,從全校學(xué)生中隨機(jī)抽取了100人的體重數(shù)據(jù),得到如下頻率分布直方圖,以樣本的頻率作為總體的概率.(1)估計這100人體重數(shù)據(jù)的平均值和樣本方差;(結(jié)果取整數(shù),同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)(2)從全校學(xué)生中隨機(jī)抽取3名學(xué)生,記為體重在的人數(shù),求的分布列和數(shù)學(xué)期望;(3)由頻率分布直方圖可以認(rèn)為,該校學(xué)生的體重近似服從正態(tài)分布.若,則認(rèn)為該校學(xué)生的體重是正常的.試判斷該校學(xué)生的體重是否正常?并說明理由.21.(12分)如圖,設(shè)橢圓:,長軸的右端點(diǎn)與拋物線:的焦點(diǎn)重合,且橢圓的離心率是.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)過作直線交拋物線于,兩點(diǎn),過且與直線垂直的直線交橢圓于另一點(diǎn),求面積的最小值,以及取到最小值時直線的方程.22.(10分)已知(1)若,且函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)a的范圍;(2)若函數(shù)有兩個極值點(diǎn),且存在滿足,令函數(shù),試判斷零點(diǎn)的個數(shù)并證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
推導(dǎo)出基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),由此能求出6和28恰好在同一組的概率.【詳解】解:將五個“完全數(shù)”6,28,496,8128,33550336,隨機(jī)分為兩組,一組2個,另一組3個,基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),∴6和28恰好在同一組的概率.故選:B.【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.2、A【解析】
在中,設(shè),,,結(jié)合三角形的內(nèi)角和及和角的正弦公式化簡可求,可得,再由已知條件求得,,,考慮建立以所在的直線為軸,以所在的直線為軸建立直角坐標(biāo)系,根據(jù)已知條件結(jié)合向量的坐標(biāo)運(yùn)算求得,然后利用基本不等式可求得的最小值.【詳解】在中,設(shè),,,,即,即,,,,,,,,即,又,,,則,所以,,解得,.以所在的直線為軸,以所在的直線為軸建立如下圖所示的平面直角坐標(biāo)系,則、、,為線段上的一點(diǎn),則存在實(shí)數(shù)使得,,設(shè),,則,,,,,消去得,,所以,,當(dāng)且僅當(dāng)時,等號成立,因此,的最小值為.故選:A.【點(diǎn)睛】本題是一道構(gòu)思非常巧妙的試題,綜合考查了三角形的內(nèi)角和定理、兩角和的正弦公式及基本不等式求解最值問題,解題的關(guān)鍵是理解是一個單位向量,從而可用、表示,建立、與參數(shù)的關(guān)系,解決本題的第二個關(guān)鍵點(diǎn)在于由,發(fā)現(xiàn)為定值,從而考慮利用基本不等式求解最小值,考查計算能力,屬于難題.3、A【解析】
由函數(shù),求得,進(jìn)而求得的值,得到答案.【詳解】由題意函數(shù),則,所以,故選A.【點(diǎn)睛】本題主要考查了分段函數(shù)的求值問題,其中解答中根據(jù)分段函數(shù)的解析式,代入求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.4、B【解析】
根據(jù)題意可得,利用向量的數(shù)量積即可求解夾角.【詳解】因?yàn)榧炊詩A角為故選:B【點(diǎn)睛】本題考查了向量數(shù)量積求夾角,需掌握向量數(shù)量積的定義求法,屬于基礎(chǔ)題.5、C【解析】
首先根據(jù)對數(shù)函數(shù)的性質(zhì)求出的取值范圍,再代入驗(yàn)證即可;【詳解】解:∵,∴當(dāng)時,滿足,∴實(shí)數(shù)可以為8.故選:C【點(diǎn)睛】本題考查對數(shù)函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.6、A【解析】
先將除A,B以外的兩人先排,再將A,B在3個空位置里進(jìn)行插空,再相乘得答案.【詳解】先將除A,B以外的兩人先排,有種;再將A,B在3個空位置里進(jìn)行插空,有種,所以共有種.故選:A【點(diǎn)睛】本題考查排列中不相鄰問題,常用插空法,屬于基礎(chǔ)題.7、B【解析】
基本事件總數(shù),能表示為兩個不同費(fèi)馬素數(shù)的和只有,,,共有個,根據(jù)古典概型求出概率.【詳解】在不超過的正偶數(shù)中隨機(jī)選取一數(shù),基本事件總數(shù)能表示為兩個不同費(fèi)馬素數(shù)的和的只有,,,共有個則它能表示為兩個不同費(fèi)馬素數(shù)的和的概率是本題正確選項:【點(diǎn)睛】本題考查概率的求法,考查列舉法解決古典概型問題,是基礎(chǔ)題.8、D【解析】
由等差數(shù)列的性質(zhì)可知,進(jìn)而代入等差數(shù)列的前項和的公式即可.【詳解】由題,.故選:D【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),考查等差數(shù)列的前項和.9、D【解析】
根據(jù)異面直線的判定定理、定義和性質(zhì),結(jié)合線面垂直的關(guān)系,對選項中的命題判斷.【詳解】A.假設(shè)直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據(jù)異面直線的性質(zhì)知,過只有唯一平面與平行,故正確.C.根據(jù)過一點(diǎn)有且只有一個平面與已知直線垂直知,故正確.D.根據(jù)異面直線的性質(zhì)知,過不一定能作一平面與垂直,故錯誤.故選:D【點(diǎn)睛】本題主要考查異面直線的定義,性質(zhì)以及線面關(guān)系,還考查了理解辨析的能力,屬于中檔題.10、C【解析】
根據(jù)不動點(diǎn)的定義,利用換底公式分離參數(shù)可得;構(gòu)造函數(shù),并討論的單調(diào)性與最值,畫出函數(shù)圖象,即可確定的取值范圍.【詳解】由得,.令,則,令,解得,所以當(dāng)時,,則在內(nèi)單調(diào)遞增;當(dāng)時,,則在內(nèi)單調(diào)遞減;所以在處取得極大值,即最大值為,則的圖象如下圖所示:由有且僅有一個不動點(diǎn),可得得或,解得或.故選:C【點(diǎn)睛】本題考查了函數(shù)新定義的應(yīng)用,由導(dǎo)數(shù)確定函數(shù)的單調(diào)性與最值,分離參數(shù)法與構(gòu)造函數(shù)方法的應(yīng)用,屬于中檔題.11、A【解析】
根據(jù)向量投影的定義,即可求解.【詳解】在上的投影為.故選:A【點(diǎn)睛】本題考查向量的投影,屬于基礎(chǔ)題.12、B【解析】
把和代入再由復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡,利用虛部為0求得m值.【詳解】因?yàn)闉閷?shí)數(shù),所以,解得.【點(diǎn)睛】本題考查復(fù)數(shù)的概念,考查運(yùn)算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出圖象,求出方程的根,分類討論的正負(fù),數(shù)形結(jié)合即可.【詳解】當(dāng)時,令,解得,所以當(dāng)時,,則單調(diào)遞增,當(dāng)時,,則單調(diào)遞減,當(dāng)時,單調(diào)遞減,且,作出函數(shù)的圖象如圖:(1)當(dāng)時,方程整理得,只有2個根,不滿足條件;(2)若,則當(dāng)時,方程整理得,則,,此時各有1解,故當(dāng)時,方程整理得,有1解同時有2解,即需,,因?yàn)椋?),故此時滿足題意;或有2解同時有1解,則需,由(1)可知不成立;或有3解同時有0解,根據(jù)圖象不存在此種情況,或有0解同時有3解,則,解得,故,(3)若,顯然當(dāng)時,和均無解,當(dāng)時,和無解,不符合題意.綜上:的范圍是,故答案為:,【點(diǎn)睛】本題主要考查了函數(shù)零點(diǎn)與函數(shù)圖象的關(guān)系,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力,屬于中檔題.14、【解析】試題分析:由題意得,因?yàn)閽佄锞€,即,即焦點(diǎn)到準(zhǔn)線的距離為.考點(diǎn):拋物線的性質(zhì).15、【解析】
由點(diǎn)坐標(biāo)可確定拋物線方程,由此得到坐標(biāo)和準(zhǔn)線方程;過作準(zhǔn)線的垂線,垂足為,根據(jù)拋物線定義可得,可知當(dāng)直線與拋物線相切時,取得最小值;利用拋物線切線的求解方法可求得點(diǎn)坐標(biāo),根據(jù)雙曲線定義得到實(shí)軸長,結(jié)合焦距可求得所求的離心率.【詳解】是拋物線準(zhǔn)線上的一點(diǎn)拋物線方程為,準(zhǔn)線方程為過作準(zhǔn)線的垂線,垂足為,則設(shè)直線的傾斜角為,則當(dāng)取得最小值時,最小,此時直線與拋物線相切設(shè)直線的方程為,代入得:,解得:或雙曲線的實(shí)軸長為,焦距為雙曲線的離心率故答案為:【點(diǎn)睛】本題考查雙曲線離心率的求解問題,涉及到拋物線定義和標(biāo)準(zhǔn)方程的應(yīng)用、雙曲線定義的應(yīng)用;關(guān)鍵是能夠確定當(dāng)取得最小值時,直線與拋物線相切,進(jìn)而根據(jù)拋物線切線方程的求解方法求得點(diǎn)坐標(biāo).16、【解析】
設(shè)的中心為T,AB的中點(diǎn)為N,AC中點(diǎn)為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點(diǎn)為球心O,將的長度求出或用球半徑表示,再利用余弦定理即可建立方程解得半徑.【詳解】設(shè)的中心為T,AB的中點(diǎn)為N,AC中點(diǎn)為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點(diǎn)為球心O,如圖所示因?yàn)?,,所以,,,又二面角的大小為,則,,所以,設(shè)外接球半徑為R,則,,在中,由余弦定理,得,即,解得,故三棱錐外接球的表面積.故答案為:.【點(diǎn)睛】本題考查三棱錐外接球的表面積問題,解決此類問題一定要數(shù)形結(jié)合,建立關(guān)于球的半徑的方程,本題計算量較大,是一道難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)將函數(shù)轉(zhuǎn)化為分段函數(shù)或利用絕對值三角不等式進(jìn)行求解;(2)利用基本不等式或柯西不等式證明即可.【詳解】解法一:(1)當(dāng)時,,當(dāng),,當(dāng)時,,所以解法二:(1)如圖當(dāng)時,解法三:(1)當(dāng)且僅當(dāng)即時,等號成立.當(dāng)時解法一:(2)由題意可知,,因?yàn)?,,,所以要證明不等式,只需證明,因?yàn)槌闪ⅲ栽坏仁匠闪?解法二:(2)因?yàn)?,,,所以,,又因?yàn)?,所以,所以,原不等式得證.補(bǔ)充:解法三:(2)由題意可知,,因?yàn)?,,,所以要證明不等式,只需證明,由柯西不等式得:成立,所以原不等式成立.【點(diǎn)睛】本題主要考查了絕對值函數(shù)的最值求解,不等式的證明,絕對值三角不等式,基本不等式及柯西不等式的應(yīng)用,考查了學(xué)生的邏輯推理和運(yùn)算求解能力.18、(Ⅰ)(Ⅱ)見證明【解析】
(Ⅰ)求導(dǎo)得,由是減函數(shù)得,對任意的,都有恒成立,構(gòu)造函數(shù),通過求導(dǎo)判斷它的單調(diào)性,令其最大值小于等于0,即可求出;(Ⅱ)由是減函數(shù),且可得,當(dāng)時,,則,即,兩邊同除以得,,即,從而,兩邊取對數(shù),然后再證明恒成立即可,構(gòu)造函數(shù),,通過求導(dǎo)證明即可.【詳解】解:(Ⅰ)的定義域?yàn)椋?由是減函數(shù)得,對任意的,都有恒成立.設(shè).∵,由知,∴當(dāng)時,;當(dāng)時,,∴在上單調(diào)遞增,在上單調(diào)遞減,∴在時取得最大值.又∵,∴對任意的,恒成立,即的最大值為.∴,解得.(Ⅱ)由是減函數(shù),且可得,當(dāng)時,,∴,即.兩邊同除以得,,即.從而,所以①.下面證;記,.∴,∵在上單調(diào)遞增,∴在上單調(diào)遞減,而,∴當(dāng)時,恒成立,∴在上單調(diào)遞減,即時,,∴當(dāng)時,.∵,∴當(dāng)時,,即②.綜上①②可得,.【點(diǎn)睛】本題考查了導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系,考查了函數(shù)的最值,考查了構(gòu)造函數(shù)的能力,考查了邏輯推理能力與計算求解能力,屬于難題.,19、(1)見解析;(2)【解析】
(1)取的中點(diǎn),連接,根據(jù)中位線的方法證明四邊形是平行四邊形.再證明與從而證明平面,從而得到平面即可.(2)以所在的直線為軸建立空間直角坐標(biāo)系,再求得平面的法向量與平面的法向量進(jìn)而求得二面角的余弦值即可.【詳解】(1)證明:如圖,取的中點(diǎn),連接.又為的中點(diǎn),則是的中位線.所以且.又且,所以且.所以四邊形是平行四邊形.所以.因?yàn)?為的中點(diǎn),所以.因?yàn)?所以.因?yàn)槠矫?所以.又,所以平面.所以.又,所以平面.又,所以平面.(2)易知兩兩互相垂直,所以分別以所在的直線為軸建立如圖所示的空間直角坐標(biāo)系:因?yàn)?所以點(diǎn).則.設(shè)平面的法向量為,由,得,令,得平面的一個法向量為;顯然平面的一個法向量為;設(shè)二面角的大小為,則.故二面角的余弦值是.【點(diǎn)睛】本題主要考查了線面垂直的證明以及建立空間直角坐標(biāo)系求解二面角的問題,需要用到線線垂直與線面垂直的轉(zhuǎn)換以及法向量的求法等.屬于中檔題.20、(1)60;25(2)見解析,2.1(3)可以認(rèn)為該校學(xué)生的體重是正常的.見解析【解析】
(1)根據(jù)頻率分布直方圖可求出平均值和樣本方差;(2)由題意知服從二項分布,分別求出,,,,進(jìn)而可求出分布列以及數(shù)學(xué)期望;(3)由第一問可知服從正態(tài)分布,繼而可求出的值,從而可判斷.【詳解】解:(1)(2)由已知可得從全校學(xué)生中隨機(jī)抽取1人,體重在的概率為0.7.隨機(jī)拍取3人,相當(dāng)于3次獨(dú)立重復(fù)實(shí)驗(yàn),隨機(jī)交量服從二項分布,則,,,,所以的分布列為:01230.0270.1890.4410.343數(shù)學(xué)期望(3)由題意知服從正態(tài)分布,則,所以可以認(rèn)為該校學(xué)生的體重是正常的.【點(diǎn)睛】本題考查了由頻率分布直方圖求進(jìn)行數(shù)據(jù)估計,考查了二項分布,考查了正態(tài)分布.注意,統(tǒng)計類問題,如果題目中沒有特殊說明,則求出數(shù)據(jù)的精度和題目中數(shù)據(jù)的小數(shù)后位數(shù)相同.21、(Ⅰ);(Ⅱ)面積的最小值為9,.【解析】
(Ⅰ)由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2022年河南省三門峽市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2023年山西省大同市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2024年內(nèi)蒙古自治區(qū)錫林郭勒盟公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2022年廣西壯族自治區(qū)百色市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2022年安徽省滁州市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 廣西南寧市(2024年-2025年小學(xué)六年級語文)統(tǒng)編版期末考試(上學(xué)期)試卷及答案
- 2024版云計算平臺安全防護(hù)技術(shù)研發(fā)合同
- 2024版建筑用管樁訂購協(xié)議模板
- 2024版企業(yè)首席執(zhí)行官聘用協(xié)議版B版
- 2024年規(guī)范離婚合同書樣本版B版
- 建立創(chuàng)新攻關(guān)“揭榜掛帥”機(jī)制行動方案
- 2024年浙江省杭州余杭區(qū)機(jī)關(guān)事業(yè)單位招用編外人員27人歷年管理單位遴選500模擬題附帶答案詳解
- 2024年01月22332高等數(shù)學(xué)基礎(chǔ)期末試題答案
- 期末素養(yǎng)測評卷(試題)-2024-2025學(xué)年三年級上冊數(shù)學(xué)人教版
- 印章交接表(可編輯)
- 體育場館運(yùn)營合同
- 5-項目五 跨境電商出口物流清關(guān)
- FMEA培訓(xùn)教材(課堂)
- 倉庫安全培訓(xùn)考試題及答案
- (正式版)SH∕T 3548-2024 石油化工涂料防腐蝕工程施工及驗(yàn)收規(guī)范
- (高清版)JTG 3370.1-2018 公路隧道設(shè)計規(guī)范 第一冊 土建工程
評論
0/150
提交評論