版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖南省長沙市瀏陽市2025屆高三3月份模擬考試數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,且.若,的面積為,則()A.5 B. C.4 D.162.若將函數(shù)的圖象上各點(diǎn)橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變)得到函數(shù)的圖象,則下列說法正確的是()A.函數(shù)在上單調(diào)遞增 B.函數(shù)的周期是C.函數(shù)的圖象關(guān)于點(diǎn)對稱 D.函數(shù)在上最大值是13.某三棱錐的三視圖如圖所示,則該三棱錐的體積為A. B. C.2 D.4.若函數(shù)的圖象過點(diǎn),則它的一條對稱軸方程可能是()A. B. C. D.5.已知的內(nèi)角、、的對邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.6.若,則“”是“的展開式中項(xiàng)的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件7.一袋中裝有個(gè)紅球和個(gè)黑球(除顏色外無區(qū)別),任取球,記其中黑球數(shù)為,則為()A. B. C. D.8.如圖是正方體截去一個(gè)四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.9.已知,函數(shù),若函數(shù)恰有三個(gè)零點(diǎn),則()A. B.C. D.10.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他和高斯、牛頓并列被稱為世界三大數(shù)學(xué)家.據(jù)說,他自己覺得最為滿意的一個(gè)數(shù)學(xué)發(fā)現(xiàn)就是“圓柱內(nèi)切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個(gè)結(jié)論,要求后人在他的墓碑上刻著一個(gè)圓柱容器里放了一個(gè)球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.11.在滿足,的實(shí)數(shù)對中,使得成立的正整數(shù)的最大值為()A.5 B.6 C.7 D.912.已知函數(shù),若,則的最小值為()參考數(shù)據(jù):A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域?yàn)開____________.14.已知,滿足約束條件,則的最大值為________.15.我國著名的數(shù)學(xué)家秦九韶在《數(shù)書九章》提出了“三斜求積術(shù)”.他把三角形的三條邊分別稱為小斜、中斜和大斜.三斜求積術(shù)就是用小斜平方加上大斜平方,送到中斜平方,取相減后余數(shù)的一半,自乘而得一個(gè)數(shù),小斜平方乘以大斜平方,送到上面得到的那個(gè)數(shù),相減后余數(shù)被4除,所得的數(shù)作為“實(shí)”,1作為“隅”,開平方后即得面積.所謂“實(shí)”、“隅”指的是在方程中,p為“隅”,q為“實(shí)”.即若的大斜、中斜、小斜分別為a,b,c,則.已知點(diǎn)D是邊AB上一點(diǎn),,,,,則的面積為________.16.若,且,則的最小值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在正四棱柱中,,,過頂點(diǎn),的平面與棱,分別交于,兩點(diǎn)(不在棱的端點(diǎn)處).(1)求證:四邊形是平行四邊形;(2)求證:與不垂直;(3)若平面與棱所在直線交于點(diǎn),當(dāng)四邊形為菱形時(shí),求長.18.(12分)已知,均為給定的大于1的自然數(shù),設(shè)集合,.(Ⅰ)當(dāng),時(shí),用列舉法表示集合;(Ⅱ)當(dāng)時(shí),,且集合滿足下列條件:①對任意,;②.證明:(ⅰ)若,則(集合為集合在集合中的補(bǔ)集);(ⅱ)為一個(gè)定值(不必求出此定值);(Ⅲ)設(shè),,,其中,,若,則.19.(12分)設(shè)函數(shù),.(1)求函數(shù)的極值;(2)對任意,都有,求實(shí)數(shù)a的取值范圍.20.(12分)在中,內(nèi)角的對邊分別為,且(1)求;(2)若,且面積的最大值為,求周長的取值范圍.21.(12分)已知函數(shù),,(1)討論的單調(diào)性;(2)若在定義域內(nèi)有且僅有一個(gè)零點(diǎn),且此時(shí)恒成立,求實(shí)數(shù)m的取值范圍.22.(10分)已知函數(shù).(1)設(shè),求函數(shù)的單調(diào)區(qū)間,并證明函數(shù)有唯一零點(diǎn).(2)若函數(shù)在區(qū)間上不單調(diào),證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)正弦定理邊化角以及三角函數(shù)公式可得,再根據(jù)面積公式可求得,再代入余弦定理求解即可.【詳解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故選:C【點(diǎn)睛】本題主要考查了解三角形中正余弦定理與面積公式的運(yùn)用,屬于中檔題.2、A【解析】
根據(jù)三角函數(shù)伸縮變換特點(diǎn)可得到解析式;利用整體對應(yīng)的方式可判斷出在上單調(diào)遞增,正確;關(guān)于點(diǎn)對稱,錯(cuò)誤;根據(jù)正弦型函數(shù)最小正周期的求解可知錯(cuò)誤;根據(jù)正弦型函數(shù)在區(qū)間內(nèi)值域的求解可判斷出最大值無法取得,錯(cuò)誤.【詳解】將橫坐標(biāo)縮短到原來的得:當(dāng)時(shí),在上單調(diào)遞增在上單調(diào)遞增,正確;的最小正周期為:不是的周期,錯(cuò)誤;當(dāng)時(shí),,關(guān)于點(diǎn)對稱,錯(cuò)誤;當(dāng)時(shí),此時(shí)沒有最大值,錯(cuò)誤.本題正確選項(xiàng):【點(diǎn)睛】本題考查正弦型函數(shù)的性質(zhì),涉及到三角函數(shù)的伸縮變換、正弦型函數(shù)周期性、單調(diào)性和對稱性、正弦型函數(shù)在一段區(qū)間內(nèi)的值域的求解;關(guān)鍵是能夠靈活應(yīng)用整體對應(yīng)的方式,通過正弦函數(shù)的圖象來判斷出所求函數(shù)的性質(zhì).3、A【解析】由給定的三視圖可知,該幾何體表示一個(gè)底面為一個(gè)直角三角形,且兩直角邊分別為和,所以底面面積為高為的三棱錐,所以三棱錐的體積為,故選A.4、B【解析】
把已知點(diǎn)坐標(biāo)代入求出,然后驗(yàn)證各選項(xiàng).【詳解】由題意,,或,,不妨取或,若,則函數(shù)為,四個(gè)選項(xiàng)都不合題意,若,則函數(shù)為,只有時(shí),,即是對稱軸.故選:B.【點(diǎn)睛】本題考查正弦型復(fù)合函數(shù)的對稱軸,掌握正弦函數(shù)的性質(zhì)是解題關(guān)鍵.5、B【解析】
延長到,使,連接,則四邊形為平行四邊形,根據(jù)余弦定理可求出,進(jìn)而可得的面積.【詳解】解:延長到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.【點(diǎn)睛】本題考查余弦定理的應(yīng)用,考查三角形面積公式的應(yīng)用,其中根據(jù)中線作出平行四邊形是關(guān)鍵,是中檔題.6、B【解析】
求得的二項(xiàng)展開式的通項(xiàng)為,令時(shí),可得項(xiàng)的系數(shù)為90,即,求得,即可得出結(jié)果.【詳解】若則二項(xiàng)展開式的通項(xiàng)為,令,即,則項(xiàng)的系數(shù)為,充分性成立;當(dāng)?shù)恼归_式中項(xiàng)的系數(shù)為90,則有,從而,必要性不成立.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計(jì)算能力,難度較易.7、A【解析】
由題意可知,隨機(jī)變量的可能取值有、、、,計(jì)算出隨機(jī)變量在不同取值下的概率,進(jìn)而可求得隨機(jī)變量的數(shù)學(xué)期望值.【詳解】由題意可知,隨機(jī)變量的可能取值有、、、,則,,,.因此,隨機(jī)變量的數(shù)學(xué)期望為.故選:A.【點(diǎn)睛】本題考查隨機(jī)變量數(shù)學(xué)期望的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.8、C【解析】
根據(jù)三視圖作出幾何體的直觀圖,結(jié)合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點(diǎn)睛】本題考查利用三視圖計(jì)算幾何體的體積,考查空間想象能力與計(jì)算能力,屬于基礎(chǔ)題.9、C【解析】
當(dāng)時(shí),最多一個(gè)零點(diǎn);當(dāng)時(shí),,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性畫函數(shù)草圖,根據(jù)草圖可得.【詳解】當(dāng)時(shí),,得;最多一個(gè)零點(diǎn);當(dāng)時(shí),,,當(dāng),即時(shí),,在,上遞增,最多一個(gè)零點(diǎn).不合題意;當(dāng),即時(shí),令得,,函數(shù)遞增,令得,,函數(shù)遞減;函數(shù)最多有2個(gè)零點(diǎn);根據(jù)題意函數(shù)恰有3個(gè)零點(diǎn)函數(shù)在上有一個(gè)零點(diǎn),在,上有2個(gè)零點(diǎn),如圖:且,解得,,.故選.【點(diǎn)睛】遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個(gè)參數(shù),故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.10、C【解析】
設(shè)球的半徑為R,根據(jù)組合體的關(guān)系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設(shè)球的半徑為R,根據(jù)題意圓柱的表面積為,解得,所以該球的體積為.故選:C【點(diǎn)睛】本題主要考查組合體的表面積和體積,還考查了對數(shù)學(xué)史了解,屬于基礎(chǔ)題.11、A【解析】
由題可知:,且可得,構(gòu)造函數(shù)求導(dǎo),通過導(dǎo)函數(shù)求出的單調(diào)性,結(jié)合圖像得出,即得出,從而得出的最大值.【詳解】因?yàn)椋瑒t,即整理得,令,設(shè),則,令,則,令,則,故在上單調(diào)遞增,在上單調(diào)遞減,則,因?yàn)?,,由題可知:時(shí),則,所以,所以,當(dāng)無限接近時(shí),滿足條件,所以,所以要使得故當(dāng)時(shí),可有,故,即,所以:最大值為5.故選:A.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)求函數(shù)單調(diào)性、極值和最值,以及運(yùn)用構(gòu)造函數(shù)法和放縮法,同時(shí)考查轉(zhuǎn)化思想和解題能力.12、A【解析】
首先的單調(diào)性,由此判斷出,由求得的關(guān)系式.利用導(dǎo)數(shù)求得的最小值,由此求得的最小值.【詳解】由于函數(shù),所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡得,所以,構(gòu)造函數(shù),.構(gòu)造函數(shù),,所以在區(qū)間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區(qū)間上遞增,在區(qū)間上遞減.而,所以在區(qū)間上的最小值為,也即的最小值為,所以的最小值為.故選:A【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查分段函數(shù)的圖像與性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意可得,,解不等式可求.【詳解】解:由題意可得,,解可得,,故答案為.【點(diǎn)睛】本題主要考查了函數(shù)的定義域的求解,屬于基礎(chǔ)題.14、【解析】
根據(jù)題意,畫出可行域,將目標(biāo)函數(shù)看成可行域內(nèi)的點(diǎn)與原點(diǎn)距離的平方,利用圖象即可求解.【詳解】可行域如圖所示,易知當(dāng),時(shí),的最大值為.故答案為:9.【點(diǎn)睛】本題考查了利用幾何法解決非線性規(guī)劃問題,屬于中檔題.15、.【解析】
利用正切的和角公式求得,再求得,利用余弦定理求得,代入“三斜求積術(shù)”公式即可求得答案.【詳解】,所以,由余弦定理可知,得.根據(jù)“三斜求積術(shù)”可得,所以.【點(diǎn)睛】本題考查正切的和角公式,同角三角函數(shù)的基本關(guān)系式,余弦定理的應(yīng)用,考查學(xué)生分析問題的能力和計(jì)算整理能力,難度較易.16、8【解析】
利用的代換,將寫成,然后根據(jù)基本不等式求解最小值.【詳解】因?yàn)椋慈〉忍枺?,所以最小值?【點(diǎn)睛】已知,求解()的最小值的處理方法:利用,得到,展開后利用基本不等式求解,注意取等號的條件.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析;(3).【解析】
(1)由平面與平面沒有交點(diǎn),可得與不相交,又與共面,所以,同理可證,得證;(2)由四邊形是平行四邊形,且,則不可能是矩形,所以與不垂直;(3)先證,可得為的中點(diǎn),從而得出是的中點(diǎn),可得.【詳解】(1)依題意都在平面上,因此平面,平面,又平面,平面,平面與平面平行,即兩個(gè)平面沒有交點(diǎn),則與不相交,又與共面,所以,同理可證,所以四邊形是平行四邊形;(2)因?yàn)椋瑑牲c(diǎn)不在棱的端點(diǎn)處,所以,又四邊形是平行四邊形,,則不可能是矩形,所以與不垂直;(3)如圖,延長交的延長線于點(diǎn),若四邊形為菱形,則,易證,所以,即為的中點(diǎn),因此,且,所以是的中位線,則是的中點(diǎn),所以.【點(diǎn)睛】本題考查了立體幾何中的線線平行和垂直的判定問題,和線段長的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,屬中檔題.18、(Ⅰ);(Ⅱ)(ⅰ)詳見解析.(ⅱ)詳見解析.(Ⅲ)詳見解析.【解析】
(Ⅰ)當(dāng),時(shí),,,,,,.即可得出.(Ⅱ)(i)當(dāng)時(shí),,2,3,,,又,,,,,,必然有,否則得出矛盾.(ii)由.可得.又,即可得出為定值.(iii)由設(shè),,,,其中,,,2,,.,可得,通過求和即可證明結(jié)論.【詳解】(Ⅰ)解:當(dāng),時(shí),,,,,..(Ⅱ)證明:(i)當(dāng)時(shí),,2,3,,,又,,,,,,必然有,否則,而,與已知對任意,矛盾.因此有.(ii)..,為定值.(iii)由設(shè),,,,其中,,,2,,.,..【點(diǎn)睛】本題主要考查等差數(shù)列與等比數(shù)列的通項(xiàng)公式求和公式,考查了推理能力與計(jì)算能力,屬于難題.19、(1)當(dāng)時(shí),無極值;當(dāng)時(shí),極小值為;(2).【解析】
(1)求導(dǎo),對參數(shù)進(jìn)行分類討論,即可容易求得函數(shù)的極值;(2)構(gòu)造函數(shù),兩次求導(dǎo),根據(jù)函數(shù)單調(diào)性,由恒成立問題求參數(shù)范圍即可.【詳解】(1)依題,當(dāng)時(shí),,函數(shù)在上單調(diào)遞增,此時(shí)函數(shù)無極值;當(dāng)時(shí),令,得,令,得所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.此時(shí)函數(shù)有極小值,且極小值為.綜上:當(dāng)時(shí),函數(shù)無極值;當(dāng)時(shí),函數(shù)有極小值,極小值為.(2)令易得且,令所以,因?yàn)?,,從而,所以,在上單調(diào)遞增.又若,則所以在上單調(diào)遞增,從而,所以時(shí)滿足題意.若,所以,,在中,令,由(1)的單調(diào)性可知,有最小值,從而.所以所以,由零點(diǎn)存在性定理:,使且在上單調(diào)遞減,在上單調(diào)遞增.所以當(dāng)時(shí),.故當(dāng),不成立.綜上所述:的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究含參函數(shù)的極值,涉及由恒成立問題求參數(shù)范圍的問題,屬壓軸題.20、(1)(2)【解析】
(1)利用二倍角公式及三角形內(nèi)角和定理,將化簡為,求出的值,結(jié)合,求出A的值;(2)寫出三角形的面積公式,由其最大值為求出.由余弦定理,結(jié)合,,求出的范圍,注意.進(jìn)而求出周長的范圍.【詳解】解:(1)整理得解得或(舍去)又;(2)由題意知,又,,又周長的取值范圍是【點(diǎn)睛】本題考查了二倍角余弦公式,三角形面積公式,余弦定理的應(yīng)用,求三角形的周長的范圍問題.屬于中檔題.21、(1)時(shí),在上單調(diào)遞增,時(shí),在上遞減,在上遞增.(2).【解析】
(1)求出導(dǎo)函數(shù),分類討論,由確定增區(qū)間,由確定減區(qū)間;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第四單元學(xué)情評估(含答案)2024-2025學(xué)年統(tǒng)編版七年級語文下冊
- 《認(rèn)清國情》課件
- 子宮角妊娠的健康宣教
- 頭皮毛囊炎的臨床護(hù)理
- 《教你門窗工程預(yù)算》課件
- 《機(jī)械設(shè)計(jì)基礎(chǔ)》課件-第6章
- 《Java程序設(shè)計(jì)及移動(dòng)APP開發(fā)》課件-第09章
- 粉刺的臨床護(hù)理
- 痱子的臨床護(hù)理
- JJF(陜) 092-2022 醫(yī)用電動(dòng)頸腰椎牽引治療儀校準(zhǔn)規(guī)范
- 專項(xiàng)訓(xùn)練:坐標(biāo)的變化(30題)(原卷版+解析)
- 2024年新人教版一年級數(shù)學(xué)上冊課件 第六單元 復(fù)習(xí)與關(guān)聯(lián) 1.數(shù)與運(yùn)算
- Unit 4 Ready for school(教學(xué)設(shè)計(jì))-2024-2025學(xué)年人教PEP版(一起)(2024)英語一年級上冊
- 2024秋期國家開放大學(xué)《公共政策概論》一平臺在線形考(形考任務(wù)1至4)試題及答案
- 《2024版 CSCO非小細(xì)胞肺癌診療指南》解讀
- GB 44497-2024智能網(wǎng)聯(lián)汽車自動(dòng)駕駛數(shù)據(jù)記錄系統(tǒng)
- 2023年12月英語四級真題及答案-第2套
- 安全操作規(guī)程匯編(服裝廠)
- 家具售后合同協(xié)議書
- 空氣動(dòng)力學(xué)數(shù)值方法:有限體積法(FVM):離散化技術(shù)與數(shù)值通量
- 下肢靜脈曲張的靜脈內(nèi)射頻消融術(shù)
評論
0/150
提交評論