版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省福州市鼓樓區(qū)2025屆高三第二次調(diào)研數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知a>0,b>0,a+b=1,若α=,則的最小值是()A.3 B.4 C.5 D.62.執(zhí)行如圖所示的程序框圖,則輸出的的值為()A. B.C. D.3.已知雙曲線,為坐標(biāo)原點,、為其左、右焦點,點在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.4.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于5.已知拋物線:,直線與分別相交于點,與的準(zhǔn)線相交于點,若,則()A.3 B. C. D.6.正方形的邊長為,是正方形內(nèi)部(不包括正方形的邊)一點,且,則的最小值為()A. B. C. D.7.已知等差數(shù)列的前n項和為,且,則()A.4 B.8 C.16 D.28.已知函數(shù),且的圖象經(jīng)過第一、二、四象限,則,,的大小關(guān)系為()A. B.C. D.9.如圖,正四面體的體積為,底面積為,是高的中點,過的平面與棱、、分別交于、、,設(shè)三棱錐的體積為,截面三角形的面積為,則()A., B.,C., D.,10.如圖,四面體中,面和面都是等腰直角三角形,,,且二面角的大小為,若四面體的頂點都在球上,則球的表面積為()A. B. C. D.11.正四棱錐的五個頂點在同一個球面上,它的底面邊長為,側(cè)棱長為,則它的外接球的表面積為()A. B. C. D.12.下列不等式正確的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的對稱軸與準(zhǔn)線的交點為,直線與交于,兩點,若,則實數(shù)__________.14.己知函數(shù),若曲線在處的切線與直線平行,則__________.15.已知函數(shù),則曲線在處的切線斜率為________.16.3張獎券分別標(biāo)有特等獎、一等獎和二等獎.甲、乙兩人同時各抽取1張獎券,兩人都未抽得特等獎的概率是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若對任意x0,f(x)0恒成立,求實數(shù)a的取值范圍;(2)若函數(shù)f(x)有兩個不同的零點x1,x2(x1x2),證明:.18.(12分)已知正數(shù)x,y,z滿足xyzt(t為常數(shù)),且的最小值為,求實數(shù)t的值.19.(12分)如圖,底面是等腰梯形,,點為的中點,以為邊作正方形,且平面平面.(1)證明:平面平面.(2)求二面角的正弦值.20.(12分)已知定點,,直線、相交于點,且它們的斜率之積為,記動點的軌跡為曲線。(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,是否存在定點,使得直線與斜率之積為定值,若存在,求出坐標(biāo);若不存在,請說明理由。21.(12分)已知橢圓,上、下頂點分別是、,上、下焦點分別是、,焦距為,點在橢圓上.(1)求橢圓的方程;(2)若為橢圓上異于、的動點,過作與軸平行的直線,直線與交于點,直線與直線交于點,判斷是否為定值,說明理由.22.(10分)已知,點分別為橢圓的左、右頂點,直線交于另一點為等腰直角三角形,且.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)過點的直線與橢圓交于兩點,總使得為銳角,求直線斜率的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)題意,將a、b代入,利用基本不等式求出最小值即可.【詳解】∵a>0,b>0,a+b=1,∴,當(dāng)且僅當(dāng)時取“=”號.
答案:C【點睛】本題考查基本不等式的應(yīng)用,“1”的應(yīng)用,利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是首先要判斷參數(shù)是否為正;二定是其次要看和或積是否為定值(和定積最大,積定和最小);三相等是最后一定要驗證等號能否成立,屬于基礎(chǔ)題.2、B【解析】
列出循環(huán)的每一步,進(jìn)而可求得輸出的值.【詳解】根據(jù)程序框圖,執(zhí)行循環(huán)前:,,,執(zhí)行第一次循環(huán)時:,,所以:不成立.繼續(xù)進(jìn)行循環(huán),…,當(dāng),時,成立,,由于不成立,執(zhí)行下一次循環(huán),,,成立,,成立,輸出的的值為.故選:B.【點睛】本題考查的知識要點:程序框圖的循環(huán)結(jié)構(gòu)和條件結(jié)構(gòu)的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.3、D【解析】
根據(jù),先確定出的長度,然后利用雙曲線定義將轉(zhuǎn)化為的關(guān)系式,化簡后可得到的值,即可求漸近線方程.【詳解】如圖所示:因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【點睛】本題考查根據(jù)雙曲線中的長度關(guān)系求解漸近線方程,難度一般.注意雙曲線的焦點到漸近線的距離等于虛軸長度的一半.4、C【解析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應(yīng)選答案C.5、C【解析】
根據(jù)拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點如圖,過A,M作準(zhǔn)線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據(jù)拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點,所以MD為三角形NAC的中位線,故MD=CE=EA=AC設(shè)MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點睛】本題考查求拋物線的焦點弦的斜率,常見于利用拋物線的定義構(gòu)建關(guān)系,屬于中檔題.6、C【解析】
分別以直線為軸,直線為軸建立平面直角坐標(biāo)系,設(shè),根據(jù),可求,而,化簡求解.【詳解】解:建立以為原點,以直線為軸,直線為軸的平面直角坐標(biāo)系.設(shè),,,則,,由,即,得.所以=,所以當(dāng)時,的最小值為.故選:C.【點睛】本題考查向量的數(shù)量積的坐標(biāo)表示,屬于基礎(chǔ)題.7、A【解析】
利用等差的求和公式和等差數(shù)列的性質(zhì)即可求得.【詳解】.故選:.【點睛】本題考查等差數(shù)列的求和公式和等差數(shù)列的性質(zhì),考查基本量的計算,難度容易.8、C【解析】
根據(jù)題意,得,,則為減函數(shù),從而得出函數(shù)的單調(diào)性,可比較和,而,比較,即可比較.【詳解】因為,且的圖象經(jīng)過第一、二、四象限,所以,,所以函數(shù)為減函數(shù),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又因為,所以,又,,則|,即,所以.故選:C.【點睛】本題考查利用函數(shù)的單調(diào)性比較大小,還考查化簡能力和轉(zhuǎn)化思想.9、A【解析】
設(shè),取與重合時的情況,計算出以及的值,利用排除法可得出正確選項.【詳解】如圖所示,利用排除法,取與重合時的情況.不妨設(shè),延長到,使得.,,,,則,由余弦定理得,,,又,,當(dāng)平面平面時,,,排除B、D選項;因為,,此時,,當(dāng)平面平面時,,,排除C選項.故選:A.【點睛】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計算公式、排除法,考查了空間想象能力、推理能力與計算能力,屬于難題.10、B【解析】
分別取、的中點、,連接、、,利用二面角的定義轉(zhuǎn)化二面角的平面角為,然后分別過點作平面的垂線與過點作平面的垂線交于點,在中計算出,再利用勾股定理計算出,即可得出球的半徑,最后利用球體的表面積公式可得出答案.【詳解】如下圖所示,分別取、的中點、,連接、、,由于是以為直角等腰直角三角形,為的中點,,,且、分別為、的中點,所以,,所以,,所以二面角的平面角為,,則,且,所以,,,是以為直角的等腰直角三角形,所以,的外心為點,同理可知,的外心為點,分別過點作平面的垂線與過點作平面的垂線交于點,則點在平面內(nèi),如下圖所示,由圖形可知,,在中,,,所以,,所以,球的半徑為,因此,球的表面積為.故選:B.【點睛】本題考查球體的表面積,考查二面角的定義,解決本題的關(guān)鍵在于找出球心的位置,同時考查了計算能力,屬于中等題.11、C【解析】
如圖所示,在平面的投影為正方形的中心,故球心在上,計算長度,設(shè)球半徑為,則,解得,得到答案.【詳解】如圖所示:在平面的投影為正方形的中心,故球心在上,,故,,設(shè)球半徑為,則,解得,故.故選:.【點睛】本題考查了四棱錐的外接球問題,意在考查學(xué)生的空間想象能力和計算能力.12、D【解析】
根據(jù),利用排除法,即可求解.【詳解】由,可排除A、B、C選項,又由,所以.故選D.【點睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),以及對數(shù)的比較大小問題,其中解答熟記三角函數(shù)與對數(shù)函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由于直線過拋物線的焦點,因此過,分別作的準(zhǔn)線的垂線,垂足分別為,,由拋物線的定義及平行線性質(zhì)可得,從而再由拋物線定義可求得直線傾斜角的余弦,再求得正切即為直線斜率.注意對稱性,問題應(yīng)該有兩解.【詳解】直線過拋物線的焦點,,過,分別作的準(zhǔn)線的垂線,垂足分別為,,由拋物線的定義知,.因為,所以.因為,所以,從而.設(shè)直線的傾斜角為,不妨設(shè),如圖,則,,同理,則,解得,,由對稱性還有滿足題意.,綜上,.【點睛】本題考查拋物線的性質(zhì),考查拋物線的焦點弦問題,掌握拋物線的定義,把拋物線上點到焦點距離與它到距離聯(lián)系起來是解題關(guān)鍵.14、【解析】
先求導(dǎo),再根據(jù)導(dǎo)數(shù)的幾何意義,有求解.【詳解】因為函數(shù),所以,所以,解得.故答案為:【點睛】本題考查導(dǎo)數(shù)的幾何意義,還考查運算求解能力以及數(shù)形結(jié)合思想,屬于基礎(chǔ)題.15、【解析】
求導(dǎo)后代入可構(gòu)造方程求得,即為所求斜率.【詳解】,,解得:,即在處的切線斜率為.故答案為:.【點睛】本題考查切線斜率的求解問題,考查導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.16、【解析】
利用排列組合公式進(jìn)行計算,再利用古典概型公式求出不是特等獎的兩張的概率即可.【詳解】解:3張獎券分別標(biāo)有特等獎、一等獎和二等獎,甲、乙兩人同時各抽取1張獎券,則兩人同時抽取兩張共有:種排法排除特等獎外兩人選兩張共有:種排法.故兩人都未抽得特等獎的概率是:故答案為:【點睛】本題主要考查古典概型的概率公式的應(yīng)用,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】
(1)求出,判斷函數(shù)的單調(diào)性,求出函數(shù)的最大值,即求的范圍;(2)由(1)可知,.對分和兩種情況討論,構(gòu)造函數(shù),利用放縮法和基本不等式證明結(jié)論.【詳解】(1)由,得.令.當(dāng)時,;當(dāng)時,;在上單調(diào)遞增,在上單調(diào)遞減,.對任意恒成立,.(2)證明:由(1)可知,在上單調(diào)遞增,在上單調(diào)遞減,.若,則,令在上單調(diào)遞增,,.又,在上單調(diào)遞減,.若,則顯然成立.綜上,.又以上兩式左右兩端分別相加,得,即,所以.【點睛】本題考查利用導(dǎo)數(shù)解決不等式恒成立問題,利用導(dǎo)數(shù)證明不等式,屬于難題.18、t=1【解析】
把變形為結(jié)合基本不等式進(jìn)行求解.【詳解】因為即,當(dāng)且僅當(dāng),,時,上述等號成立,所以,即,又x,y,z>0,所以xyzt=1.【點睛】本題主要考查基本不等式的應(yīng)用,利用基本不等式求解最值時要注意轉(zhuǎn)化為適用形式,同時要關(guān)注不等號是否成立,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).19、(1)見解析;(2)【解析】
(1)先證明四邊形是菱形,進(jìn)而可知,然后可得到平面,即可證明平面平面;(2)記AC,BE的交點為O,再取FG的中點P.以O(shè)為坐標(biāo)原點,以射線OB,OC,OP分別為x軸、y軸、z軸的正半軸建立如圖所示的空間直角坐標(biāo)系,分別求出平面ABF和DBF的法向量,然后由,可求出二面角的余弦值,進(jìn)而可求出二面角的正弦值.【詳解】(1)證明:因為點為的中點,,所以,因為,所以,所以四邊形是平行四邊形,因為,所以平行四邊形是菱形,所以,因為平面平面,且平面平面,所以平面.因為平面,所以平面平面.(2)記AC,BE的交點為O,再取FG的中點P.由題意可知AC,BE,OP兩兩垂直,故以O(shè)為坐標(biāo)原點,以射線OB,OC,OP分別為x軸、y軸、z軸的正半軸建立如圖所示的空間直角坐標(biāo)系.因為底面ABCD是等腰梯形,,所以四邊形ABCE是菱形,且,所以,則,設(shè)平面ABF的法向量為,則,不妨取,則,設(shè)平面DBF的法向量為,則,不妨取,則,故.記二面角的大小為,故.【點睛】本題考查了面面垂直的證明,考查了二面角的求法,利用空間向量求平面的法向量是解決空間角問題的常見方法,屬于中檔題.20、(1);(2)存在定點,見解析【解析】
(1)設(shè)動點,則,利用,求出曲線的方程.(2)由已知直線過點,設(shè)的方程為,則聯(lián)立方程組,消去得,設(shè),,,利用韋達(dá)定理求解直線的斜率,然后求解指向性方程,推出結(jié)果.【詳解】解:(1)設(shè)動點,則,,,即,化簡得:。由已知,故曲線的方程為。(2)由已知直線過點,設(shè)的方程為,則聯(lián)立方程組,消去得,設(shè),,則又直線與斜率分別為,,則。當(dāng)時,,;當(dāng)時,,。所以存在定點,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021屆重慶市縉云教育聯(lián)盟高一上學(xué)期期末數(shù)學(xué)試題(解析版)
- 2025年施工項目部春節(jié)節(jié)后復(fù)工復(fù)產(chǎn)工作專項方案 (匯編3份)
- 《畜牧軟件系統(tǒng)介紹》課件
- 小學(xué)一年級100以內(nèi)數(shù)學(xué)口算練習(xí)題大全
- 《結(jié)腸癌護(hù)理查房HY》課件
- 《海報設(shè)計》課件
- 天津市河北區(qū)2023-2024學(xué)年高三上學(xué)期期末質(zhì)量檢測英語試題
- 能源行業(yè)環(huán)保意識培訓(xùn)回顧
- 石油行業(yè)采購工作總結(jié)
- 辦公室衛(wèi)生消毒手冊
- 服務(wù)營銷學(xué)教案
- 護(hù)理查房 小兒支氣管肺炎
- 相關(guān)方安全管理培訓(xùn)
- 2023年中國雪茄煙行業(yè)現(xiàn)狀深度研究與未來投資預(yù)測報告
- 皮帶輸送機巡檢規(guī)程
- 遼寧省大連市沙河口區(qū)2022-2023學(xué)年七年級上學(xué)期期末語文試題(含答案)
- 心肺循環(huán)課件
- 東大光明清潔生產(chǎn)審核報告
- 生產(chǎn)計劃排產(chǎn)表-自動排產(chǎn)
- 管理研究方法論for msci.students maxqda12入門指南
- 2023年通用技術(shù)集團招聘筆試題庫及答案解析
評論
0/150
提交評論