版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆湖南省桃江縣一中高三下學(xué)期一??荚嚁?shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在正方體中,點(diǎn)、分別為、的中點(diǎn),過點(diǎn)作平面使平面,平面若直線平面,則的值為()A. B. C. D.2.“”是“函數(shù)(為常數(shù))為冪函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件3.已知平面向量滿足,且,則所夾的銳角為()A. B. C. D.04.若兩個(gè)非零向量、滿足,且,則與夾角的余弦值為()A. B. C. D.5.在中,角所對(duì)的邊分別為,已知,.當(dāng)變化時(shí),若存在最大值,則正數(shù)的取值范圍為A. B. C. D.6.函數(shù)的圖象在點(diǎn)處的切線為,則在軸上的截距為()A. B. C. D.7.已知集合,,則集合的真子集的個(gè)數(shù)是()A.8 B.7 C.4 D.38.已知復(fù)數(shù)z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限9.設(shè)F為雙曲線C:(a>0,b>0)的右焦點(diǎn),O為坐標(biāo)原點(diǎn),以O(shè)F為直徑的圓與圓x2+y2=a2交于P、Q兩點(diǎn).若|PQ|=|OF|,則C的離心率為A. B.C.2 D.10.五名志愿者到三個(gè)不同的單位去進(jìn)行幫扶,每個(gè)單位至少一人,則甲、乙兩人不在同一個(gè)單位的概率為()A. B. C. D.11.幻方最早起源于我國(guó),由正整數(shù)1,2,3,……,這個(gè)數(shù)填入方格中,使得每行、每列、每條對(duì)角線上的數(shù)的和相等,這個(gè)正方形數(shù)陣就叫階幻方.定義為階幻方對(duì)角線上所有數(shù)的和,如,則()A.55 B.500 C.505 D.505012.已知命題:是“直線和直線互相垂直”的充要條件;命題:對(duì)任意都有零點(diǎn);則下列命題為真命題的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.用數(shù)字、、、、、組成無重復(fù)數(shù)字的位自然數(shù),其中相鄰兩個(gè)數(shù)字奇偶性不同的有_____個(gè).14.將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,則函數(shù)的最大值為______.15.從編號(hào)為,,,的張卡片中隨機(jī)抽取一張,放回后再隨機(jī)抽取一張,則第二次抽得的卡片上的數(shù)字能被第一次抽得的卡片上數(shù)字整除的概率為_____________.16.已知過點(diǎn)的直線與函數(shù)的圖象交于、兩點(diǎn),點(diǎn)在線段上,過作軸的平行線交函數(shù)的圖象于點(diǎn),當(dāng)∥軸,點(diǎn)的橫坐標(biāo)是三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在正四棱錐中,底面正方形的對(duì)角線交于點(diǎn)且(1)求直線與平面所成角的正弦值;(2)求銳二面角的大小.18.(12分)已知數(shù)列滿足對(duì)任意都有,其前項(xiàng)和為,且是與的等比中項(xiàng),.(1)求數(shù)列的通項(xiàng)公式;(2)已知數(shù)列滿足,,設(shè)數(shù)列的前項(xiàng)和為,求大于的最小的正整數(shù)的值.19.(12分)已知橢圓C的離心率為且經(jīng)過點(diǎn)(1)求橢圓C的方程;(2)過點(diǎn)(0,2)的直線l與橢圓C交于不同兩點(diǎn)A、B,以O(shè)A、OB為鄰邊的平行四邊形OAMB的頂點(diǎn)M在橢圓C上,求直線l的方程.20.(12分)在四棱錐的底面是菱形,底面,,分別是的中點(diǎn),.(Ⅰ)求證:;(Ⅱ)求直線與平面所成角的正弦值;(III)在邊上是否存在點(diǎn),使與所成角的余弦值為,若存在,確定點(diǎn)的位置;若不存在,說明理由.21.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為:(為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為:.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取得最大值時(shí)直線的直角坐標(biāo)方程.22.(10分)貧困人口全面脫貧是全面建成小康社會(huì)的標(biāo)志性指標(biāo).黨的十九屆四中全會(huì)提出“堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),建立解決相對(duì)貧困的長(zhǎng)效機(jī)制”對(duì)當(dāng)前和下一個(gè)階段的扶貧工作進(jìn)行了前瞻性的部署,即2020年要通過精準(zhǔn)扶貧全面消除絕對(duì)貧困,實(shí)現(xiàn)全面建成小康社會(huì)的奮斗目標(biāo).為了響應(yīng)黨的號(hào)召,某市對(duì)口某貧困鄉(xiāng)鎮(zhèn)開展扶貧工作.對(duì)某種農(nóng)產(chǎn)品加工生產(chǎn)銷售進(jìn)行指導(dǎo),經(jīng)調(diào)查知,在一個(gè)銷售季度內(nèi),每售出一噸該產(chǎn)品獲利5萬元,未售出的商品,每噸虧損2萬元.經(jīng)統(tǒng)計(jì),兩市場(chǎng)以往100個(gè)銷售周期該產(chǎn)品的市場(chǎng)需求量的頻數(shù)分布如下表:市場(chǎng):需求量(噸)90100110頻數(shù)205030市場(chǎng):需求量(噸)90100110頻數(shù)106030把市場(chǎng)需求量的頻率視為需求量的概率,設(shè)該廠在下個(gè)銷售周期內(nèi)生產(chǎn)噸該產(chǎn)品,在、兩市場(chǎng)同時(shí)銷售,以(單位:噸)表示下一個(gè)銷售周期兩市場(chǎng)的需求量,(單位:萬元)表示下一個(gè)銷售周期兩市場(chǎng)的銷售總利潤(rùn).(1)求的概率;(2)以銷售利潤(rùn)的期望為決策依據(jù),確定下個(gè)銷售周期內(nèi)生產(chǎn)量噸還是噸?并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
作出圖形,設(shè)平面分別交、于點(diǎn)、,連接、、,取的中點(diǎn),連接、,連接交于點(diǎn),推導(dǎo)出,由線面平行的性質(zhì)定理可得出,可得出點(diǎn)為的中點(diǎn),同理可得出點(diǎn)為的中點(diǎn),結(jié)合中位線的性質(zhì)可求得的值.【詳解】如下圖所示:設(shè)平面分別交、于點(diǎn)、,連接、、,取的中點(diǎn),連接、,連接交于點(diǎn),四邊形為正方形,、分別為、的中點(diǎn),則且,四邊形為平行四邊形,且,且,且,則四邊形為平行四邊形,,平面,則存在直線平面,使得,若平面,則平面,又平面,則平面,此時(shí),平面為平面,直線不可能與平面平行,所以,平面,,平面,平面,平面平面,,,所以,四邊形為平行四邊形,可得,為的中點(diǎn),同理可證為的中點(diǎn),,,因此,.故選:B.【點(diǎn)睛】本題考查線段長(zhǎng)度比值的計(jì)算,涉及線面平行性質(zhì)的應(yīng)用,解答的關(guān)鍵就是找出平面與正方體各棱的交點(diǎn)位置,考查推理能力與計(jì)算能力,屬于中等題.2、A【解析】
根據(jù)冪函數(shù)定義,求得的值,結(jié)合充分條件與必要條件的概念即可判斷.【詳解】∵當(dāng)函數(shù)為冪函數(shù)時(shí),,解得或,∴“”是“函數(shù)為冪函數(shù)”的充分不必要條件.故選:A.【點(diǎn)睛】本題考查了充分必要條件的概念和判斷,冪函數(shù)定義的應(yīng)用,屬于基礎(chǔ)題.3、B【解析】
根據(jù)題意可得,利用向量的數(shù)量積即可求解夾角.【詳解】因?yàn)榧炊詩A角為故選:B【點(diǎn)睛】本題考查了向量數(shù)量積求夾角,需掌握向量數(shù)量積的定義求法,屬于基礎(chǔ)題.4、A【解析】
設(shè)平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數(shù)量積的運(yùn)算律可求得的值,即為所求.【詳解】設(shè)平面向量與的夾角為,,可得,在等式兩邊平方得,化簡(jiǎn)得.故選:A.【點(diǎn)睛】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數(shù)量積的運(yùn)算性質(zhì)的應(yīng)用,考查計(jì)算能力,屬于中等題.5、C【解析】
因?yàn)?,,所以根?jù)正弦定理可得,所以,,所以,其中,,因?yàn)榇嬖谧畲笾?,所以由,可得,所以,所以,解得,所以正?shù)的取值范圍為,故選C.6、A【解析】
求出函數(shù)在處的導(dǎo)數(shù)后可得曲線在處的切線方程,從而可求切線的縱截距.【詳解】,故,所以曲線在處的切線方程為:.令,則,故切線的縱截距為.故選:A.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義以及直線的截距,注意直線的縱截距指直線與軸交點(diǎn)的縱坐標(biāo),因此截距有正有負(fù),本題屬于基礎(chǔ)題.7、D【解析】
轉(zhuǎn)化條件得,利用元素個(gè)數(shù)為n的集合真子集個(gè)數(shù)為個(gè)即可得解.【詳解】由題意得,,集合的真子集的個(gè)數(shù)為個(gè).故選:D.【點(diǎn)睛】本題考查了集合的化簡(jiǎn)和運(yùn)算,考查了集合真子集個(gè)數(shù)問題,屬于基礎(chǔ)題.8、C【解析】分析:根據(jù)復(fù)數(shù)的運(yùn)算,求得復(fù)數(shù)z,再利用復(fù)數(shù)的表示,即可得到復(fù)數(shù)對(duì)應(yīng)的點(diǎn),得到答案.詳解:由題意,復(fù)數(shù)z=2i1-i所以復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(-1,-1),位于復(fù)平面內(nèi)的第三象限,故選C.點(diǎn)睛:本題主要考查了復(fù)數(shù)的四則運(yùn)算及復(fù)數(shù)的表示,其中根據(jù)復(fù)數(shù)的四則運(yùn)算求解復(fù)數(shù)z是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.9、A【解析】
準(zhǔn)確畫圖,由圖形對(duì)稱性得出P點(diǎn)坐標(biāo),代入圓的方程得到c與a關(guān)系,可求雙曲線的離心率.【詳解】設(shè)與軸交于點(diǎn),由對(duì)稱性可知軸,又,為以為直徑的圓的半徑,為圓心.,又點(diǎn)在圓上,,即.,故選A.【點(diǎn)睛】本題為圓錐曲線離心率的求解,難度適中,審題時(shí)注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運(yùn)算繁瑣,準(zhǔn)確率大大降低,雙曲線離心率問題是圓錐曲線中的重點(diǎn)問題,需強(qiáng)化練習(xí),才能在解決此類問題時(shí)事半功倍,信手拈來.10、D【解析】
三個(gè)單位的人數(shù)可能為2,2,1或3,1,1,求出甲、乙兩人在同一個(gè)單位的概率,利用互為對(duì)立事件的概率和為1即可解決.【詳解】由題意,三個(gè)單位的人數(shù)可能為2,2,1或3,1,1;基本事件總數(shù)有種,若為第一種情況,且甲、乙兩人在同一個(gè)單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個(gè)單位,共有種,故甲、乙兩人在同一個(gè)單位的概率為,故甲、乙兩人不在同一個(gè)單位的概率為.故選:D.【點(diǎn)睛】本題考查古典概型的概率公式的計(jì)算,涉及到排列與組合的應(yīng)用,在正面情況較多時(shí),可以先求其對(duì)立事件,即甲、乙兩人在同一個(gè)單位的概率,本題有一定難度.11、C【解析】
因?yàn)榛梅降拿啃?、每列、每條對(duì)角線上的數(shù)的和相等,可得,即得解.【詳解】因?yàn)榛梅降拿啃小⒚苛?、每條對(duì)角線上的數(shù)的和相等,所以階幻方對(duì)角線上數(shù)的和就等于每行(或每列)的數(shù)的和,又階幻方有行(或列),因此,,于是.故選:C【點(diǎn)睛】本題考查了數(shù)陣問題,考查了學(xué)生邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.12、A【解析】
先分別判斷每一個(gè)命題的真假,再利用復(fù)合命題的真假判斷確定答案即可.【詳解】當(dāng)時(shí),直線和直線,即直線為和直線互相垂直,所以“”是直線和直線互相垂直“的充分條件,當(dāng)直線和直線互相垂直時(shí),,解得.所以“”是直線和直線互相垂直“的不必要條件.:“”是直線和直線互相垂直“的充分不必要條件,故是假命題.當(dāng)時(shí),沒有零點(diǎn),所以命題是假命題.所以是真命題,是假命題,是假命題,是假命題.故選:.【點(diǎn)睛】本題主要考查充要條件的判斷和兩直線的位置關(guān)系,考查二次函數(shù)的圖象,考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
對(duì)首位數(shù)的奇偶進(jìn)行分類討論,利用分步乘法計(jì)數(shù)原理和分類加法計(jì)數(shù)原理可得出結(jié)果.【詳解】①若首位為奇數(shù),則第一、三、五個(gè)數(shù)位上的數(shù)都是奇數(shù),其余三個(gè)數(shù)位上的數(shù)為偶數(shù),此時(shí),符號(hào)條件的位自然數(shù)個(gè)數(shù)為個(gè);②若首位數(shù)為偶數(shù),則首位數(shù)不能為,可排在第三或第五個(gè)數(shù)位上,第二、四、六個(gè)數(shù)位上的數(shù)為奇數(shù),此時(shí),符合條件的位自然數(shù)個(gè)數(shù)為個(gè).綜上所述,符合條件的位自然數(shù)個(gè)數(shù)為個(gè).故答案為:.【點(diǎn)睛】本題考查數(shù)的排列問題,要注意首位數(shù)字的分類討論,考查分步乘法計(jì)數(shù)和分類加法計(jì)數(shù)原理的應(yīng)用,考查計(jì)算能力,屬于中等題.14、【解析】
由三角函數(shù)圖象相位變換后表達(dá)函數(shù)解析式,再利用三角恒等變換與輔助角公式整理的表達(dá)式,進(jìn)而由三角函數(shù)值域求得最大值.【詳解】將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,則所以,當(dāng)函數(shù)最大,最大值為故答案為:【點(diǎn)睛】本題考查表示三角函數(shù)圖象平移后圖象的解析式,還考查了利用三角恒等變換化簡(jiǎn)函數(shù)式并求最值,屬于簡(jiǎn)單題.15、【解析】
基本事件總數(shù),第二次抽得的卡片上的數(shù)字能被第一次抽得的卡片上數(shù)字的基本事件有8個(gè),由此能求出概率.【詳解】解:從編號(hào)為,,,的張卡片中隨機(jī)抽取一張,放回后再隨機(jī)抽取一張,基本事件總數(shù),第二次抽得的卡片上的數(shù)字能被第一次抽得的卡片上數(shù)字的基本事件有8個(gè),分別為:,,,,,,,.所以第二次抽得的卡片上的數(shù)字能被第一次抽得的卡片上數(shù)字整除的概率為.故答案為.【點(diǎn)睛】本題考查概率的求法,考查古典概型、列舉法等基礎(chǔ)知識(shí),屬于基礎(chǔ)題.16、【解析】
通過設(shè)出A點(diǎn)坐標(biāo),可得C點(diǎn)坐標(biāo),通過∥軸,可得B點(diǎn)坐標(biāo),于是再利用可得答案.【詳解】根據(jù)題意,可設(shè)點(diǎn),則,由于∥軸,故,代入,可得,即,由于在線段上,故,即,解得.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)以分別為軸,軸,軸,建立空間直角坐標(biāo)系,設(shè)底面正方形邊長(zhǎng)為再求解與平面的法向量,繼而求得直線與平面所成角的正弦值即可.(2)分別求解平面與平面的法向量,再求二面角的余弦值判斷二面角大小即可.【詳解】解:在正四棱錐中,底面正方形的對(duì)角線交于點(diǎn)所以平面取的中點(diǎn)的中點(diǎn)所以兩兩垂直,故以點(diǎn)為坐標(biāo)原點(diǎn),以分別為軸,軸,軸,建立空間直角坐標(biāo)系.設(shè)底面正方形邊長(zhǎng)為因?yàn)樗运?所以,設(shè)平面的法向量是,因?yàn)?,所以,,取則,所以所以,所以直線與平面所成角的正弦值為.設(shè)平面的法向量是,因?yàn)?,所以,取則所以,由知平面的法向量是,所以所以,所以銳二面角的大小為.【點(diǎn)睛】本題主要考查了建立平面直角坐標(biāo)系求解線面夾角以及二面角的問題,屬于中檔題.18、(1)(2)4【解析】
(1)利用判斷是等差數(shù)列,利用求出,利用等比中項(xiàng)建立方程,求出公差可得.(2)利用的通項(xiàng)公式,求出,用錯(cuò)位相減法求出,最后建立不等式求出最小的正整數(shù).【詳解】解:任意都有,數(shù)列是等差數(shù)列,,又是與的等比中項(xiàng),,設(shè)數(shù)列的公差為,且,則,解得,,;由題意可知,①,②,①﹣②得:,,,由得,,,,滿足條件的最小的正整數(shù)的值為.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式和前項(xiàng)和公式及錯(cuò)位相減法求和.(1)解決等差數(shù)列通項(xiàng)的思路(1)在等差數(shù)列中,是最基本的兩個(gè)量,一般可設(shè)出和,利用等差數(shù)列的通項(xiàng)公式和前項(xiàng)和公式列方程(組)求解即可.(2)錯(cuò)位相減法求和的方法:如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項(xiàng)和時(shí),可采用錯(cuò)位相減法,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解;在寫“”與“”的表達(dá)式時(shí)應(yīng)特別注意將兩式“錯(cuò)項(xiàng)對(duì)齊”以便下一步準(zhǔn)確寫出“”的表達(dá)式19、(1)(2)【解析】
(1)根據(jù)橢圓的離心率、橢圓上點(diǎn)的坐標(biāo)以及列方程,由此求得,進(jìn)而求得橢圓的方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,寫出韋達(dá)定理.根據(jù)平行四邊形的性質(zhì)以及向量加法的幾何意義得到,由此求得點(diǎn)的坐標(biāo),將的坐標(biāo)代入橢圓方程,化簡(jiǎn)后可求得直線的斜率,由此求得直線的方程.【詳解】(1)由橢圓的離心率為,點(diǎn)在橢圓上,所以,且解得,所以橢圓的方程為.(2)顯然直線的斜率存在,設(shè)直線的斜率為,則直線的方程為,設(shè),由消去得,所以,由已知得,所以,由于點(diǎn)都在橢圓上,所以,展開有,又,所以,經(jīng)檢驗(yàn)滿足,故直線的方程為.【點(diǎn)睛】本小題主要考查根據(jù)橢圓的離心率和橢圓上一點(diǎn)的坐標(biāo)求橢圓方程,考查直線和橢圓的位置關(guān)系,考查運(yùn)算求解能力,屬于中檔題.20、(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析.【解析】
(Ⅰ)由題意結(jié)合幾何關(guān)系可證得平面,據(jù)此證明題中的結(jié)論即可;(Ⅱ)建立空間直角坐標(biāo)系,求得直線的方向向量與平面的一個(gè)法向量,然后求解線面角的正弦值即可;(Ⅲ)假設(shè)滿足題意的點(diǎn)存在,設(shè),由直線與的方向向量得到關(guān)于的方程,解方程即可確定點(diǎn)F的位置.【詳解】(Ⅰ)由菱形的性質(zhì)可得:,結(jié)合三角形中位線的性質(zhì)可知:,故,底面,底面,故,且,故平面,平面,(Ⅱ)由題意結(jié)合菱形的性質(zhì)易知,,,以點(diǎn)O為坐標(biāo)原點(diǎn),建立如圖所示的空間直角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 年產(chǎn)20000噸高端紡織面料技術(shù)改造項(xiàng)目可行性研究報(bào)告模板-立項(xiàng)備案
- 二零二五年度建材材料采購(gòu)與環(huán)保評(píng)價(jià)服務(wù)合同范本3篇
- 中國(guó)長(zhǎng)期護(hù)理保險(xiǎn)制度發(fā)展現(xiàn)狀及建議
- 護(hù)士職業(yè)生涯規(guī)劃
- 云南省騰沖市第四中學(xué)2024-2025學(xué)年七年級(jí)上學(xué)期期末考試 語文試題(含答案)
- 中圖版高中信息技術(shù)必修1說課稿-2.3 甄別信息的方法-
- Unit 2 Special Days Lesson 1(說課稿)-2023-2024學(xué)年人教新起點(diǎn)版英語五年級(jí)下冊(cè)
- 二年級(jí)上冊(cè)六 制作標(biāo)本-表內(nèi)除法第4課時(shí)《連乘、連除和乘除混合運(yùn)算》(說課稿)-2024-2025學(xué)年二年級(jí)上冊(cè)數(shù)學(xué)青島版(五四學(xué)制)
- 福建省龍巖市新羅區(qū)2024-2025學(xué)年三年級(jí)上學(xué)期期末數(shù)學(xué)試題
- 甘肅省天水市(2024年-2025年小學(xué)六年級(jí)語文)部編版小升初真題(下學(xué)期)試卷及答案
- 公路施工表格
- 2024至2030年中國(guó)昆明市酒店行業(yè)發(fā)展監(jiān)測(cè)及市場(chǎng)發(fā)展?jié)摿︻A(yù)測(cè)報(bào)告
- 《中國(guó)心力衰竭診斷和治療指南2024》解讀(總)
- 科學(xué)新課程標(biāo)準(zhǔn)中核心素養(yǎng)的內(nèi)涵解讀及實(shí)施方略講解課件
- 輪扣式高支模施工方案
- 2024助貸委托服務(wù)協(xié)議合同模板
- 醫(yī)療質(zhì)量信息數(shù)據(jù)內(nèi)部驗(yàn)證制度
- 子宮內(nèi)膜間質(zhì)肉瘤的畫像組學(xué)研究
- 福建省廈門市2022-2023學(xué)年高一年級(jí)上冊(cè)期末質(zhì)量檢測(cè)物理試題(含答案)
- 2023年公路養(yǎng)護(hù)工知識(shí)考試題庫(kù)附答案
- 高警示(高危)藥品考試試題與答案
評(píng)論
0/150
提交評(píng)論