版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省恩施州巴東一中2025屆高考仿真卷數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的最大值為,最小正周期為,則有序數(shù)對為()A. B. C. D.2.若x,y滿足約束條件的取值范圍是A.[0,6] B.[0,4] C.[6, D.[4,3.函數(shù)的定義域為,集合,則()A. B. C. D.4.已知平面和直線a,b,則下列命題正確的是()A.若∥,b∥,則∥ B.若,,則∥C.若∥,,則 D.若,b∥,則5.已知、分別是雙曲線的左、右焦點,過作雙曲線的一條漸近線的垂線,分別交兩條漸近線于點、,過點作軸的垂線,垂足恰為,則雙曲線的離心率為()A. B. C. D.6.已知函數(shù),,若,對任意恒有,在區(qū)間上有且只有一個使,則的最大值為()A. B. C. D.7.一個正三棱柱的正(主)視圖如圖,則該正三棱柱的側(cè)面積是()A.16 B.12 C.8 D.68.上世紀末河南出土的以鶴的尺骨(翅骨)制成的“骨笛”(圖1),充分展示了我國古代高超的音律藝術(shù)及先進的數(shù)學(xué)水平,也印證了我國古代音律與歷法的密切聯(lián)系.圖2為骨笛測量“春(秋)分”,“夏(冬)至”的示意圖,圖3是某骨笛的部分測量數(shù)據(jù)(骨笛的彎曲忽略不計),夏至(或冬至)日光(當(dāng)日正午太陽光線)與春秋分日光(當(dāng)日正午太陽光線)的夾角等于黃赤交角.由歷法理論知,黃赤交角近1萬年持續(xù)減小,其正切值及對應(yīng)的年代如下表:黃赤交角正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根據(jù)以上信息,通過計算黃赤交角,可估計該骨笛的大致年代是()A.公元前2000年到公元元年 B.公元前4000年到公元前2000年C.公元前6000年到公元前4000年 D.早于公元前6000年9.雙曲線C:(,)的離心率是3,焦點到漸近線的距離為,則雙曲線C的焦距為()A.3 B. C.6 D.10.正項等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.5411.若函數(shù)(其中,圖象的一個對稱中心為,,其相鄰一條對稱軸方程為,該對稱軸處所對應(yīng)的函數(shù)值為,為了得到的圖象,則只要將的圖象()A.向右平移個單位長度 B.向左平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度12.點為的三條中線的交點,且,,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)有一道描述有關(guān)等差與等比數(shù)列的問題:有四個和尚在做法事之前按身高從低到高站成一列,已知前三個和尚的身高依次成等差數(shù)列,后三個和尚的身高依次成等比數(shù)列,且前三個和尚的身高之和為cm,中間兩個和尚的身高之和為cm,則最高的和尚的身高是____________cm.14.若函數(shù)的圖像上存在點,滿足約束條件,則實數(shù)的最大值為__________.15.設(shè)Sn為數(shù)列{an}的前n項和,若an0,a1=1,且2Sn=an(an+t),n∈N*,則S10=_____.16.已知集合,,則____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)).以原點為極點,x軸的非負半軸為極軸,建立極坐標(biāo)系.(1)求曲線C的極坐標(biāo)方程;(2)直線(t為參數(shù))與曲線C交于A,B兩點,求最大時,直線l的直角坐標(biāo)方程.18.(12分)在平面直角坐標(biāo)系中,已知直線(為參數(shù)),以坐標(biāo)原點為極點,軸的非負半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程;(2)設(shè)點的極坐標(biāo)為,直線與曲線的交點為,求的值.19.(12分)已知定點,,直線、相交于點,且它們的斜率之積為,記動點的軌跡為曲線。(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,是否存在定點,使得直線與斜率之積為定值,若存在,求出坐標(biāo);若不存在,請說明理由。20.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中,求的面積的值(或最大值).已知的內(nèi)角,,所對的邊分別為,,,三邊,,與面積滿足關(guān)系式:,且,求的面積的值(或最大值).21.(12分)在中,角、、所對的邊分別為、、,角、、的度數(shù)成等差數(shù)列,.(1)若,求的值;(2)求的最大值.22.(10分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】函數(shù)(為輔助角)∴函數(shù)的最大值為,最小正周期為故選B2、D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標(biāo)函數(shù)z=x+2y經(jīng)過C點時,函數(shù)取得最小值,由解得C(2,1),目標(biāo)函數(shù)的最小值為:4目標(biāo)函數(shù)的范圍是[4,+∞).故選D.3、A【解析】
根據(jù)函數(shù)定義域得集合,解對數(shù)不等式得到集合,然后直接利用交集運算求解.【詳解】解:由函數(shù)得,解得,即;又,解得,即,則.故選:A.【點睛】本題考查了交集及其運算,考查了函數(shù)定義域的求法,是基礎(chǔ)題.4、C【解析】
根據(jù)線面的位置關(guān)系,結(jié)合線面平行的判定定理、平行線的性質(zhì)進行判斷即可.【詳解】A:當(dāng)時,也可以滿足∥,b∥,故本命題不正確;B:當(dāng)時,也可以滿足,,故本命題不正確;C:根據(jù)平行線的性質(zhì)可知:當(dāng)∥,,時,能得到,故本命題是正確的;D:當(dāng)時,也可以滿足,b∥,故本命題不正確.故選:C【點睛】本題考查了線面的位置關(guān)系,考查了平行線的性質(zhì),考查了推理論證能力.5、B【解析】
設(shè)點位于第二象限,可求得點的坐標(biāo),再由直線與直線垂直,轉(zhuǎn)化為兩直線斜率之積為可得出的值,進而可求得雙曲線的離心率.【詳解】設(shè)點位于第二象限,由于軸,則點的橫坐標(biāo)為,縱坐標(biāo)為,即點,由題意可知,直線與直線垂直,,,因此,雙曲線的離心率為.故選:B.【點睛】本題考查雙曲線離心率的計算,解答的關(guān)鍵就是得出、、的等量關(guān)系,考查計算能力,屬于中等題.6、C【解析】
根據(jù)的零點和最值點列方程組,求得的表達式(用表示),根據(jù)在上有且只有一個最大值,求得的取值范圍,求得對應(yīng)的取值范圍,由為整數(shù)對的取值進行驗證,由此求得的最大值.【詳解】由題意知,則其中,.又在上有且只有一個最大值,所以,得,即,所以,又,因此.①當(dāng)時,,此時取可使成立,當(dāng)時,,所以當(dāng)或時,都成立,舍去;②當(dāng)時,,此時取可使成立,當(dāng)時,,所以當(dāng)或時,都成立,舍去;③當(dāng)時,,此時取可使成立,當(dāng)時,,所以當(dāng)時,成立;綜上所得的最大值為.故選:C【點睛】本小題主要考查三角函數(shù)的零點和最值,考查三角函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.7、B【解析】
根據(jù)正三棱柱的主視圖,以及長度,可知該幾何體的底面正三角形的邊長,然后根據(jù)矩形的面積公式,可得結(jié)果.【詳解】由題可知:該幾何體的底面正三角形的邊長為2所以該正三棱柱的三個側(cè)面均為邊長為2的正方形,所以該正三棱柱的側(cè)面積為故選:B【點睛】本題考查正三棱柱側(cè)面積的計算以及三視圖的認識,關(guān)鍵在于求得底面正三角形的邊長,掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎(chǔ)題.8、D【解析】
先理解題意,然后根據(jù)題意建立平面幾何圖形,在利用三角函數(shù)的知識計算出冬至日光與春秋分日光的夾角,即黃赤交角,即可得到正確選項.【詳解】解:由題意,可設(shè)冬至日光與垂直線夾角為,春秋分日光與垂直線夾角為,則即為冬至日光與春秋分日光的夾角,即黃赤交角,將圖3近似畫出如下平面幾何圖形:則,,.,估計該骨笛的大致年代早于公元前6000年.故選:.【點睛】本題考查利用三角函數(shù)解決實際問題的能力,運用了兩角和與差的正切公式,考查了轉(zhuǎn)化思想,數(shù)學(xué)建模思想,以及數(shù)學(xué)運算能力,屬中檔題.9、A【解析】
根據(jù)焦點到漸近線的距離,可得,然后根據(jù),可得結(jié)果.【詳解】由題可知:雙曲線的漸近線方程為取右焦點,一條漸近線則點到的距離為,由所以,則又所以所以焦距為:故選:A【點睛】本題考查雙曲線漸近線方程,以及之間的關(guān)系,識記常用的結(jié)論:焦點到漸近線的距離為,屬基礎(chǔ)題.10、C【解析】
由等差數(shù)列通項公式得,求出,再利用等差數(shù)列前項和公式能求出.【詳解】正項等差數(shù)列的前項和,,,解得或(舍),,故選C.【點睛】本題主要考查等差數(shù)列的性質(zhì)與求和公式,屬于中檔題.解等差數(shù)列問題要注意應(yīng)用等差數(shù)列的性質(zhì)()與前項和的關(guān)系.11、B【解析】
由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出,由五點法作圖求出的值,可得的解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,誘導(dǎo)公式,得出結(jié)論.【詳解】根據(jù)已知函數(shù)其中,的圖象過點,,可得,,解得:.再根據(jù)五點法作圖可得,可得:,可得函數(shù)解析式為:故把的圖象向左平移個單位長度,可得的圖象,故選B.【點睛】本題主要考查由函數(shù)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出,由五點法作圖求出的值,函數(shù)的圖象變換規(guī)律,誘導(dǎo)公式的應(yīng)用,屬于中檔題.12、B【解析】
可畫出圖形,根據(jù)條件可得,從而可解出,然后根據(jù),進行數(shù)量積的運算即可求出.【詳解】如圖:點為的三條中線的交點,由可得:,又因,,.故選:B【點睛】本題考查三角形重心的定義及性質(zhì),向量加法的平行四邊形法則,向量加法、減法和數(shù)乘的幾何意義,向量的數(shù)乘運算及向量的數(shù)量積的運算,考查運算求解能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
依題意設(shè)前三個和尚的身高依次為,第四個(最高)和尚的身高為,則,解得,又,解得,又因為成等比數(shù)列,則公比,故.14、1【解析】由題知x>0,且滿足約束條件的圖象為由圖可知當(dāng)與交于點B(2,1),當(dāng)直線過B點時,m取得最大值為1.點睛:線性規(guī)劃的實質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想.需要注意的是:一、準確無誤地作出可行域;二、畫標(biāo)準函數(shù)所對應(yīng)的直線時,要注意與約束條件中的直線的斜率進行比較,避免出錯;三、一般情況下,目標(biāo)函數(shù)的最大或最小會在可行域的端點或邊界上取得.15、55【解析】
由求出.由,可得,兩式相減,可得數(shù)列是以1為首項,1為公差的等差數(shù)列,即求.【詳解】由題意,當(dāng)n=1時,,當(dāng)時,由,可得,兩式相減,可得,整理得,,即,∴數(shù)列是以1為首項,1為公差的等差數(shù)列,.故答案為:55.【點睛】本題考查求數(shù)列的前項和,屬于基礎(chǔ)題.16、【解析】
由于,,則.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)利用消去參數(shù),得到曲線的普通方程,再將,代入普通方程,即可求出結(jié)論;(2)由(1)得曲線表示圓,直線曲線C交于A,B兩點,最大值為圓的直徑,直線過圓心,即可求出直線的方程.【詳解】(1)由曲線C的參數(shù)方程(為參數(shù)),可得曲線C的普通方程為,因為,所以曲線C的極坐標(biāo)方程為,即.(2)因為直線(t為參數(shù))表示的是過點的直線,曲線C的普通方程為,所以當(dāng)最大時,直線l經(jīng)過圓心.直線l的斜率為,方程為,所以直線l的直角坐標(biāo)方程為.【點睛】本題考查參數(shù)方程與普通方程互化、直角坐標(biāo)方程與極坐標(biāo)方程互化、直線與曲線的位置關(guān)系,考查化歸和轉(zhuǎn)化思想,屬于中檔題.18、(1)(2)【解析】
(1)由公式可化極坐標(biāo)方程為直角坐標(biāo)方程;(2)把點極坐標(biāo)化為直角坐標(biāo),直線的參數(shù)方程是過定點的標(biāo)準形式,因此直接把參數(shù)方程代入曲線的方程,利用參數(shù)的幾何意義求解.【詳解】解:(1),則,∴,所以曲線的直角坐標(biāo)方程為,即(2)點的直角坐標(biāo)為,易知.設(shè)對應(yīng)參數(shù)分別為將與聯(lián)立得【點睛】本題考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,考查直線參數(shù)方程,解題時可利用利用參數(shù)方程的幾何意義求直線上兩點間距離問題.19、(1);(2)存在定點,見解析【解析】
(1)設(shè)動點,則,利用,求出曲線的方程.(2)由已知直線過點,設(shè)的方程為,則聯(lián)立方程組,消去得,設(shè),,,利用韋達定理求解直線的斜率,然后求解指向性方程,推出結(jié)果.【詳解】解:(1)設(shè)動點,則,,,即,化簡得:。由已知,故曲線的方程為。(2)由已知直線過點,設(shè)的方程為,則聯(lián)立方程組,消去得,設(shè),,則又直線與斜率分別為,,則。當(dāng)時,,;當(dāng)時,,。所以存在定點,使得直線與斜率之積為定值?!军c睛】本題考查軌跡方程的求法,直線與橢圓的位置關(guān)系的綜合應(yīng)用,考查計算能力,屬于中檔題.20、見解析【解析】
若選擇①,結(jié)合三角形的面積公式,得,化簡得到,則,又,從而得到,將代入,得.又,∴,當(dāng)且僅當(dāng)時等號成立.∴,故的面積的最大值為,此時.若選擇②,,結(jié)合三角形的面積公式,得,化簡得到,則,又,從而得到,則,此時為等腰直角三角形,.若選擇③,,則結(jié)合三角形的面積公式,得,化簡得到,則,又,從而得到,則.21、(1);(2).【解析】
(1)由角的度數(shù)成等差數(shù)列,得.又.由正弦定理,得,即.由余弦定理,得,即,解得.(2)由正弦定理,得.由,得.所以當(dāng),即時,.【方法點睛】解三角形問題基本思想方法:從條件出發(fā),利用正弦定理(或余弦定理)進行代換、轉(zhuǎn)化.逐步化為純粹的邊與邊或角與角的關(guān)系,即考慮如下兩條途徑:①統(tǒng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年廣東省普通高等學(xué)校招收中等職業(yè)學(xué)校畢業(yè)生統(tǒng)一模擬考試語文題真題(解析版)
- 寒冷性脂膜炎的臨床護理
- 鼻竇壓痛的健康宣教
- 2021年工業(yè)機器人行業(yè)埃斯頓分析報告
- 汗孔角化病的臨床護理
- 聲音嘶啞的健康宣教
- 糖原貯積?、蛐偷呐R床護理
- 《酒店禮儀知識培訓(xùn)》課件
- 黑色素沉著的臨床護理
- JJF(陜) 041-2020 寬帶采集回放系統(tǒng)校準規(guī)范
- 臨沂十二五城市規(guī)劃研究專題課件
- 2022更新國家開放大學(xué)電大《計算機應(yīng)用基礎(chǔ)本》終結(jié)性考試試題答案格式已排好任務(wù)一
- DB64∕T 001-2009 梯田建設(shè)技術(shù)規(guī)范
- DB62∕T 4128-2020 公路工程竣工文件材料立卷歸檔規(guī)程
- 五年級道德與法治上冊部編版第10課《傳統(tǒng)美德源遠流長》課件(第2課時)
- 中醫(yī)婦科學(xué).病案
- 學(xué)校青少年科技創(chuàng)新工作中存在的問題
- 人教版牛頓第三定律優(yōu)秀教學(xué)課件
- NCNDA-IMFPA中英文對照電子版本
- 經(jīng)皮椎體成形術(shù)(PVP)課件
- 杰普遜航圖使用教程(專業(yè)應(yīng)用)
評論
0/150
提交評論