版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山西省忻州市岢嵐中學(xué)2025屆高考沖刺押題(最后一卷)數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.直線l過拋物線的焦點(diǎn)且與拋物線交于A,B兩點(diǎn),則的最小值是A.10 B.9 C.8 D.72.已知為虛數(shù)單位,若復(fù)數(shù)滿足,則()A. B. C. D.3.已知定義在上的函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.4.已知實(shí)數(shù)滿足不等式組,則的最小值為()A. B. C. D.5.已知分別為雙曲線的左、右焦點(diǎn),點(diǎn)是其一條漸近線上一點(diǎn),且以為直徑的圓經(jīng)過點(diǎn),若的面積為,則雙曲線的離心率為()A. B. C. D.6.函數(shù)的圖象大致為()A. B.C. D.7.已知角的終邊經(jīng)過點(diǎn)P(),則sin()=A. B. C. D.8.已知定義在上的奇函數(shù),其導(dǎo)函數(shù)為,當(dāng)時(shí),恒有.則不等式的解集為().A. B.C.或 D.或9.設(shè)F為雙曲線C:(a>0,b>0)的右焦點(diǎn),O為坐標(biāo)原點(diǎn),以O(shè)F為直徑的圓與圓x2+y2=a2交于P、Q兩點(diǎn).若|PQ|=|OF|,則C的離心率為A. B.C.2 D.10.已知滿足,,,則在上的投影為()A. B. C. D.211.拋物線的準(zhǔn)線方程是,則實(shí)數(shù)()A. B. C. D.12.已知函數(shù)在上有兩個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是______cm2,體積是_____14.的展開式中,的系數(shù)是__________.(用數(shù)字填寫答案)15.若函數(shù)為偶函數(shù),則________.16.設(shè)常數(shù),如果的二項(xiàng)展開式中項(xiàng)的系數(shù)為-80,那么______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為.(1)求直線的極坐標(biāo)方程;(2)若直線與曲線交于,兩點(diǎn),求的面積.18.(12分)在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足.(1)求B;(2)若,AD為BC邊上的中線,當(dāng)?shù)拿娣e取得最大值時(shí),求AD的長.19.(12分)高鐵和航空的飛速發(fā)展不僅方便了人們的出行,更帶動(dòng)了我國經(jīng)濟(jì)的巨大發(fā)展.據(jù)統(tǒng)計(jì),在2018年這一年內(nèi)從市到市乘坐高鐵或飛機(jī)出行的成年人約為萬人次.為了解乘客出行的滿意度,現(xiàn)從中隨機(jī)抽取人次作為樣本,得到下表(單位:人次):滿意度老年人中年人青年人乘坐高鐵乘坐飛機(jī)乘坐高鐵乘坐飛機(jī)乘坐高鐵乘坐飛機(jī)10分(滿意)1212022015分(一般)2362490分(不滿意)106344(1)在樣本中任取個(gè),求這個(gè)出行人恰好不是青年人的概率;(2)在2018年從市到市乘坐高鐵的所有成年人中,隨機(jī)選取人次,記其中老年人出行的人次為.以頻率作為概率,求的分布列和數(shù)學(xué)期望;(3)如果甲將要從市出發(fā)到市,那么根據(jù)表格中的數(shù)據(jù),你建議甲是乘坐高鐵還是飛機(jī)?并說明理由.20.(12分)如圖,在四棱錐中,側(cè)面為等邊三角形,且垂直于底面,,分別是的中點(diǎn).(1)證明:平面平面;(2)已知點(diǎn)在棱上且,求直線與平面所成角的余弦值.21.(12分)在四棱錐中,底面為直角梯形,,面.(1)在線段上是否存在點(diǎn),使面,說明理由;(2)求二面角的余弦值.22.(10分)設(shè)函數(shù),.(1)解不等式;(2)若對任意的實(shí)數(shù)恒成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)拋物線中過焦點(diǎn)的兩段線段關(guān)系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標(biāo)準(zhǔn)方程可知p=2因?yàn)橹本€l過拋物線的焦點(diǎn),由過拋物線焦點(diǎn)的弦的性質(zhì)可知所以因?yàn)闉榫€段長度,都大于0,由基本不等式可知,此時(shí)所以選B【點(diǎn)睛】本題考查了拋物線的基本性質(zhì)及其簡單應(yīng)用,基本不等式的用法,屬于中檔題.2、A【解析】分析:題設(shè)中復(fù)數(shù)滿足的等式可以化為,利用復(fù)數(shù)的四則運(yùn)算可以求出.詳解:由題設(shè)有,故,故選A.點(diǎn)睛:本題考查復(fù)數(shù)的四則運(yùn)算和復(fù)數(shù)概念中的共軛復(fù)數(shù),屬于基礎(chǔ)題.3、D【解析】
先判斷函數(shù)在時(shí)的單調(diào)性,可以判斷出函數(shù)是奇函數(shù),利用奇函數(shù)的性質(zhì)可以得到,比較三個(gè)數(shù)的大小,然后根據(jù)函數(shù)在時(shí)的單調(diào)性,比較出三個(gè)數(shù)的大小.【詳解】當(dāng)時(shí),,函數(shù)在時(shí),是增函數(shù).因?yàn)?,所以函?shù)是奇函數(shù),所以有,因?yàn)?,函?shù)在時(shí),是增函數(shù),所以,故本題選D.【點(diǎn)睛】本題考查了利用函數(shù)的單調(diào)性判斷函數(shù)值大小問題,判斷出函數(shù)的奇偶性、單調(diào)性是解題的關(guān)鍵.4、B【解析】
作出約束條件的可行域,在可行域內(nèi)求的最小值即為的最小值,作,平移直線即可求解.【詳解】作出實(shí)數(shù)滿足不等式組的可行域,如圖(陰影部分)令,則,作出,平移直線,當(dāng)直線經(jīng)過點(diǎn)時(shí),截距最小,故,即的最小值為.故選:B【點(diǎn)睛】本題考查了簡單的線性規(guī)劃問題,解題的關(guān)鍵是作出可行域、理解目標(biāo)函數(shù)的意義,屬于基礎(chǔ)題.5、B【解析】
根據(jù)題意,設(shè)點(diǎn)在第一象限,求出此坐標(biāo),再利用三角形的面積即可得到結(jié)論.【詳解】由題意,設(shè)點(diǎn)在第一象限,雙曲線的一條漸近線方程為,所以,,又以為直徑的圓經(jīng)過點(diǎn),則,即,解得,,所以,,即,即,所以,雙曲線的離心率為.故選:B.【點(diǎn)睛】本題主要考查雙曲線的離心率,解決本題的關(guān)鍵在于求出與的關(guān)系,屬于基礎(chǔ)題.6、A【解析】
根據(jù)函數(shù)的奇偶性和單調(diào)性,排除錯(cuò)誤選項(xiàng),從而得出正確選項(xiàng).【詳解】因?yàn)?,所以是偶函?shù),排除C和D.當(dāng)時(shí),,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A【點(diǎn)睛】本小題主要考查函數(shù)圖像的識別,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值,屬于中檔題.7、A【解析】
由題意可得三角函數(shù)的定義可知:,,則:本題選擇A選項(xiàng).8、D【解析】
先通過得到原函數(shù)為增函數(shù)且為偶函數(shù),再利用到軸距離求解不等式即可.【詳解】構(gòu)造函數(shù),則由題可知,所以在時(shí)為增函數(shù);由為奇函數(shù),為奇函數(shù),所以為偶函數(shù);又,即即又為開口向上的偶函數(shù)所以,解得或故選:D【點(diǎn)睛】此題考查根據(jù)導(dǎo)函數(shù)構(gòu)造原函數(shù),偶函數(shù)解不等式等知識點(diǎn),屬于較難題目.9、A【解析】
準(zhǔn)確畫圖,由圖形對稱性得出P點(diǎn)坐標(biāo),代入圓的方程得到c與a關(guān)系,可求雙曲線的離心率.【詳解】設(shè)與軸交于點(diǎn),由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心.,又點(diǎn)在圓上,,即.,故選A.【點(diǎn)睛】本題為圓錐曲線離心率的求解,難度適中,審題時(shí)注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運(yùn)算繁瑣,準(zhǔn)確率大大降低,雙曲線離心率問題是圓錐曲線中的重點(diǎn)問題,需強(qiáng)化練習(xí),才能在解決此類問題時(shí)事半功倍,信手拈來.10、A【解析】
根據(jù)向量投影的定義,即可求解.【詳解】在上的投影為.故選:A【點(diǎn)睛】本題考查向量的投影,屬于基礎(chǔ)題.11、C【解析】
根據(jù)準(zhǔn)線的方程寫出拋物線的標(biāo)準(zhǔn)方程,再對照系數(shù)求解即可.【詳解】因?yàn)闇?zhǔn)線方程為,所以拋物線方程為,所以,即.故選:C【點(diǎn)睛】本題考查拋物線與準(zhǔn)線的方程.屬于基礎(chǔ)題.12、C【解析】
對函數(shù)求導(dǎo),對a分類討論,分別求得函數(shù)的單調(diào)性及極值,結(jié)合端點(diǎn)處的函數(shù)值進(jìn)行判斷求解.【詳解】∵,.當(dāng)時(shí),,在上單調(diào)遞增,不合題意.當(dāng)時(shí),,在上單調(diào)遞減,也不合題意.當(dāng)時(shí),則時(shí),,在上單調(diào)遞減,時(shí),,在上單調(diào)遞增,又,所以在上有兩個(gè)零點(diǎn),只需即可,解得.綜上,的取值范圍是.故選C.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點(diǎn)的問題,考查了函數(shù)的單調(diào)性及極值問題,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、20+45,8【解析】試題分析:由題意得,該幾何體為三棱柱,故其表面積S=2×1體積V=12×4×2×2=8,故填:20+4考點(diǎn):1.三視圖;2.空間幾何體的表面積與體積.14、【解析】
根據(jù)組合的知識,結(jié)合組合數(shù)的公式,可得結(jié)果.【詳解】由題可知:項(xiàng)來源可以是:(1)取1個(gè),4個(gè)(2)取2個(gè),3個(gè)的系數(shù)為:故答案為:【點(diǎn)睛】本題主要考查組合的知識,熟悉二項(xiàng)式定理展開式中每一項(xiàng)的來源,實(shí)質(zhì)上每個(gè)因式中各取一項(xiàng)的乘積,轉(zhuǎn)化為組合的知識,屬中檔題.15、【解析】
二次函數(shù)為偶函數(shù)說明一次項(xiàng)系數(shù)為0,求得參數(shù),將代入表達(dá)式即可求解【詳解】由為偶函數(shù),知其一次項(xiàng)的系數(shù)為0,所以,,所以,故答案為:-5【點(diǎn)睛】本題考查由奇偶性求解參數(shù),求函數(shù)值,屬于基礎(chǔ)題16、【解析】
利用二項(xiàng)式定理的通項(xiàng)公式即可得出.【詳解】的二項(xiàng)展開式的通項(xiàng)公式:,令,解得.∴,解得.故答案為:-2.【點(diǎn)睛】本小題主要考查根據(jù)二項(xiàng)式展開式的系數(shù)求參數(shù),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)先消去參數(shù),化為直角坐標(biāo)方程,再利用求解.(2)直線與曲線方程聯(lián)立,得,求得弦長和點(diǎn)到直線的距離,再求的面積.【詳解】(1)由已知消去得,則,所以,所以直線的極坐標(biāo)方程為.(2)由,得,設(shè),兩點(diǎn)對應(yīng)的極分別為,,則,,所以,又點(diǎn)到直線的距離所以【點(diǎn)睛】本題主要考查參數(shù)方程、直角坐標(biāo)方程及極坐標(biāo)方程的轉(zhuǎn)化和直線與曲線的位置關(guān)系,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.18、(1);(2).【解析】
(1)利用正弦定理及可得,從而得到;(2)在中,利用余弦定可得,,而,故當(dāng)時(shí),的面積取得最大值,此時(shí),,在中,再利用余弦定理即可解決.【詳解】(1)由正弦定理及已知得,結(jié)合,得,因?yàn)?,所以,由,?(2)在中,由余弦定得,因?yàn)?,所以,?dāng)且僅當(dāng)時(shí),的面積取得最大值,此時(shí).在中,由余弦定理得.即.【點(diǎn)睛】本題考查正余弦定理解三角形,涉及到基本不等式求最值,考查學(xué)生的計(jì)算能力,是一道容易題.19、(1)(2)分布列見解析,數(shù)學(xué)期望(3)建議甲乘坐高鐵從市到市.見解析【解析】
(1)根據(jù)分層抽樣的特征可以得知,樣本中出行的老年人、中年人、青年人人次分別為,,,即可按照古典概型的概率計(jì)算公式計(jì)算得出;(2)依題意可知服從二項(xiàng)分布,先計(jì)算出隨機(jī)選取人次,此人為老年人概率是,所以,即,即可求出的分布列和數(shù)學(xué)期望;(3)可以計(jì)算滿意度均值來比較乘坐高鐵還是飛機(jī).【詳解】(1)設(shè)事件:“在樣本中任取個(gè),這個(gè)出行人恰好不是青年人”為,由表可得:樣本中出行的老年人、中年人、青年人人次分別為,,,所以在樣本中任取個(gè),這個(gè)出行人恰好不是青年人的概率.(2)由題意,的所有可能取值為:因?yàn)樵?018年從市到市乘坐高鐵的所有成年人中,隨機(jī)選取人次,此人為老年人概率是,所以,,,所以隨機(jī)變量的分布列為:故.(3)答案不唯一,言之有理即可.如可以從滿意度的均值來分析問題,
參考答案如下:由表可知,乘坐高鐵的人滿意度均值為:乘坐飛機(jī)的人滿意度均值為:因?yàn)?,所以建議甲乘坐高鐵從市到市.【點(diǎn)睛】本題主要考查了分層抽樣的應(yīng)用、古典概型的概率計(jì)算、以及離散型隨機(jī)變量的分布列和期望的計(jì)算,解題關(guān)鍵是對題意的理解,概率類型的判斷,屬于中檔題.20、(1)證明見解析;(2).【解析】
(1)由平面幾何知識可得出四邊形是平行四邊形,可得面,再由面面平行的判定可證得面面平行;(2)由(1)可知,兩兩垂直,故建立空間直角坐標(biāo)系,可求得面PAB的法向量,再運(yùn)用線面角的向量求法,可求得直線與平面所成角的余弦值.【詳解】(1),,又,,,而、分別是、的中點(diǎn),,故面,又且,故四邊形是平行四邊形,面,又,是面內(nèi)的兩條相交直線,故面面.(2)由(1)可知,兩兩垂直,故建系如圖所示,則,,,,設(shè)是平面PAB的法向量,,令,則,,直線NE與平面所成角的余弦值為.【點(diǎn)睛】本題考查空間的面面平行的判定,以及線面角的空間向量的求解方法,屬于中檔題.21、(1)存在;詳見解析(2)【解析】
(1)利用面面平行的性質(zhì)定理可得,為上靠近點(diǎn)的三等分點(diǎn),中點(diǎn),證明平面平面即得;(2)過作交于,可得兩兩垂直,以分別為軸建立空間直角坐標(biāo)系,求出長,寫出各點(diǎn)坐標(biāo),用向量法求二面角.【詳解】解:(1)當(dāng)為上靠近點(diǎn)的三等分點(diǎn)時(shí),滿足面.證明如下,取中點(diǎn),連結(jié).即易得所以面面,即面.(2)過作交于面,兩兩垂直,以分別為軸建立空間直角坐標(biāo)系,如圖,設(shè)面法向
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《信息產(chǎn)業(yè)》課件
- 證券結(jié)構(gòu)化產(chǎn)品協(xié)議三篇
- 《球墨鑄鐵直埋熱水管道技術(shù)規(guī)程》公示稿
- 校園美術(shù)作品長廊建設(shè)規(guī)劃計(jì)劃
- 典當(dāng)服務(wù)相關(guān)行業(yè)投資規(guī)劃報(bào)告范本
- 工具臺(tái)車相關(guān)項(xiàng)目投資計(jì)劃書
- 情感教育與道德認(rèn)知的結(jié)合計(jì)劃
- 增強(qiáng)幼兒園團(tuán)隊(duì)建設(shè)的策略計(jì)劃
- 青少年犯罪預(yù)防的保安策略計(jì)劃
- 理財(cái)規(guī)劃師課件(綜合案例分析)
- 空調(diào)銷售及安裝企業(yè)的賬務(wù)處理-記賬實(shí)操
- 大班冬至課件教學(xué)
- 2024-2030年中國咨詢行業(yè)深度調(diào)查及投資模式分析報(bào)告
- 單板滑雪課件教學(xué)課件
- 招商專員培訓(xùn)資料
- 安全生產(chǎn)目標(biāo)考核表
- 大數(shù)據(jù)分析及應(yīng)用項(xiàng)目教程(Spark SQL)(微課版) 實(shí)訓(xùn)單 實(shí)訓(xùn)5 房產(chǎn)大數(shù)據(jù)分析與探索
- 三年級安全教育教案(山東省地方課程)
- 《觸不可及》影視鑒賞
- 古建新生 課件 2024-2025學(xué)年人美版(2024)初中美術(shù)七年級上冊
- 2024年軟件開發(fā)知識產(chǎn)權(quán)歸屬協(xié)議范本
評論
0/150
提交評論